Senior Researcher
Address
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Universitätsstraße 150
D-44801 Bochum, Germany
Room
ID 1/517
Phone
+49 234 32 29445
Email
vass(at)aept.rub.de
Publications
2825793
Vass
apa
50
date
desc
year
1
Vass
444
https://www.aept.ruhr-uni-bochum.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-2cb502b81e75ae42d0dd818d626c85e0%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22S8L2C6CK%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Schulenberg%2C%20D.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Hartmann%2C%20P.%2C%20Steuer%2C%20D.%2C%20B%26%23xF6%3Bke%2C%20M.%2C%20Schulz-von%20Der%20Gathen%2C%20V.%2C%20Korolov%2C%20I.%2C%20Mussenbrock%2C%20T.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282024%29.%20Energy%20efficiency%20of%20reactive%20species%20generation%20in%20radio%20frequency%20atmospheric%20pressure%20plasma%20jets%20driven%20by%20tailored%20voltage%20waveforms%20in%20a%20He%5C%2FO%3Csub%3E2%3C%5C%2Fsub%3E%20mixture.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%2811%29%2C%2011LT01.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8ae7%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8ae7%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DS8L2C6CK%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Energy%20efficiency%20of%20reactive%20species%20generation%20in%20radio%20frequency%20atmospheric%20pressure%20plasma%20jets%20driven%20by%20tailored%20voltage%20waveforms%20in%20a%20He%5C%2FO%3Csub%3E2%3C%5C%2Fsub%3E%20mixture%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Schulenberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Steuer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marc%22%2C%22lastName%22%3A%22B%5Cu00f6ke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Schulz-von%20Der%20Gathen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22The%20effect%20of%20the%20shape%20of%20the%20applied%20voltage%20waveform%20on%20the%20energy%20efficiency%20of%20reactive%20species%20generation%20is%20investigated%20in%20an%20atmospheric%20pressure%20RF%20microplasma%20jet%20operated%20in%20a%20He%5C%2FO2%20mixture%20%2899.5%25%5C%2F0.5%25%29%20based%20on%20a%20one-dimensional%20hybrid%20fluid-kinetic%20simulation%20method.%20Using%20a%20tailored%20waveform%20synthesized%20from%20four%20consecutive%20harmonics%20%28with%20a%20base%20frequency%20of%20fb%20%3D%2013.56%20MHz%20and%20amplitudes%20of%20%28160%5C%2Fk%29%20V%20for%20the%20k-th%20harmonic%29%2C%20it%20is%20shown%20that%20by%20changing%20the%20identical%20phases%20of%20the%20even%20harmonics%20in%20the%20waveform%2C%20%5Cu03c6%2C%20the%20generation%20efficiencies%20of%20three%20specific%20reactive%20species%20%28helium%20metastables%2C%20atomic%20and%20vibrationally%20excited%20oxygen%29%2C%20defined%20as%20the%20ratio%20of%20mean%20density%20and%20input%20plasma%20power%2C%20attain%20their%20maxima%20for%20different%20values%20of%20%5Cu03c6%2C%20due%20to%20changes%20in%20the%20Electron%20Energy%20Probability%20Function%20%28EEPF%29.%20The%20phase%20control%20of%20the%20EEPF%20and%20its%20critical%20role%20in%20modulating%20generation%20energy%20efficiencies%20are%20explained%20in%20detail.%20The%20simulation%20results%20are%20verified%20by%20experimental%20%28Phase%20Resolved%20Optical%20Emission%20Spectroscopy%20and%20Two%20Photon%20Absorption%20Laser%20Induced%20Fluorescence%29%20data.%22%2C%22date%22%3A%222024-11-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad8ae7%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8ae7%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-11-20T09%3A58%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22JRCKJY5J%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tian%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETian%2C%20C.-B.%2C%20Wang%2C%20L.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wang%2C%20X.-K.%2C%20Dong%2C%20W.%2C%20Song%2C%20Y.-H.%2C%20Wang%2C%20Y.-N.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282024%29.%20The%20detachment-induced%20mode%20in%20electronegative%20capacitively%20coupled%20radio-frequency%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%287%29%2C%20075008.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad5df8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad5df8%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DJRCKJY5J%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20detachment-induced%20mode%20in%20electronegative%20capacitively%20coupled%20radio-frequency%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chong-Biao%22%2C%22lastName%22%3A%22Tian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiao-Kun%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wan%22%2C%22lastName%22%3A%22Dong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuan-Hong%22%2C%22lastName%22%3A%22Song%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22You-Nian%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22Insights%20into%20the%20spatio-temporally%20resolved%20electron%20power%20absorption%20dynamics%20in%20capacitively%20coupled%20radio-frequency%20plasmas%20are%20essential%20for%20understanding%20the%20fundamentals%20of%20their%20operation%20and%20as%20a%20basis%20for%20knowledge-based%20plasma%20process%20development.%20Similar%20to%20the%20%5Cu03b3-mode%2C%20an%20ionization%20maximum%20is%20observed%20at%20the%20sheath%20edge%20around%20the%20time%20of%20maximum%20sheath%20voltage%20in%20electronegative%20oxygen%20discharges%20at%20a%20pressure%20of%20300%20Pa.%20Based%20on%20Particle-in-Cell%5C%2FMonte%20Carlo%20Collisions%20%28PIC%5C%2FMCC%29%20simulations%2C%20we%20demonstrate%20that%20this%20maximum%20is%20not%20only%20caused%20by%20secondary%20electrons%20emitted%20at%20the%20electrode%20and%20collisionally%20multiplied%20inside%20the%20sheath.%20In%20fact%2C%20it%20also%20occurs%20in%20the%20complete%20absence%20of%20secondary%20electrons%20in%20the%20simulation%2C%20and%20is%20caused%20by%20the%20generation%20of%20O%5Cu2212%20ions%20by%20electron%20attachment%20close%20to%20the%20electrode%20during%20the%20local%20sheath%20collapse.%20These%20negative%20ions%20are%20accelerated%20towards%20the%20plasma%20bulk%20by%20the%20sheath%20electric%20field%20during%20sheath%20expansion.%20By%20electron%20detachment%20from%20these%20negative%20ions%2C%20electrons%20are%20generated%20inside%20the%20sheath%20and%20are%20accelerated%20towards%20the%20plasma%20bulk%20by%20the%20instantaneous%20sheath%20electric%20field%5Cu2014similarly%20to%20secondary%20electrons.%20Ionization%20is%20also%20observed%20in%20the%20plasma%20bulk%20and%20caused%20by%20electrons%20generated%20by%20detachment%20and%20accelerated%20by%20the%20high%20drift-and%20ambipolar%20electric%20fields.%20This%20detachment-induced%20electron%20power%20absorption%20is%20found%20to%20have%20significant%20effects%20on%20the%20discharge%20in%20the%20presence%20and%20absence%20of%20secondary%20electron%20emission.%20Its%20fundamentals%20are%20understood%20based%20on%20an%20analysis%20of%20the%20spatio-temporal%20electron%20and%20O%5Cu2212%20power%20absorption%20dynamics%20as%20well%20as%20the%20trajectory%20of%20selected%20O%5Cu2212%20ions%20close%20to%20the%20electrode.%22%2C%22date%22%3A%222024-07-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad5df8%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad5df8%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-16T15%3A35%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22H3ZCWCPF%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Masheyeva%20et%20al.%22%2C%22parsedDate%22%3A%222024-04-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMasheyeva%2C%20R.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wang%2C%20X.-K.%2C%20Liu%2C%20Y.-X.%2C%20Derzsi%2C%20A.%2C%20Hartmann%2C%20P.%2C%20Schulze%2C%20J.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282024%29.%20Electron%20power%20absorption%20in%20CF%20%3Csub%3E4%3C%5C%2Fsub%3E%20capacitively%20coupled%20RF%20plasmas%20operated%20in%20the%20striation%20mode.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%284%29%2C%20045019.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad3c69%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad3c69%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DH3ZCWCPF%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20power%20absorption%20in%20CF%20%3Csub%3E4%3C%5C%2Fsub%3E%20capacitively%20coupled%20RF%20plasmas%20operated%20in%20the%20striation%20mode%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ranna%22%2C%22lastName%22%3A%22Masheyeva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mate%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiao-Kun%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yong-Xin%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22The%20electron%20power%20absorption%20mechanisms%20in%20electronegative%20capacitively%20coupled%20plasmas%20in%20CF4%20are%20investigated%20using%20particle-in-cell%5C%2FMonte%20Carlo%20collisions%20simulations%20at%20a%20pressure%20of%20p%20%3D%2060%20Pa%2C%20a%20driving%20frequency%20of%20f%20%3D13.56%20MHz%20for%20voltage%20amplitudes%20in%20the%20interval%20of%20%5Cu03d50%20%3D100%5Cu2212300%20V%2C%20where%20pronounced%20self-organized%20density%20variations%2C%20i.e.%20striations%2C%20develop.%20The%20calculations%20are%20based%20on%20the%20Boltzmann%20term%20analysis%2C%20a%20computational%20diagnostic%20method%20capable%20of%20providing%20a%20complete%20spatio-temporal%20description%20of%20electron%20power%20absorption.%20The%20discharge%20undergoes%20an%20electron%20power%20absorption%20mode%20transition%20from%20the%20drift-ambipolar-%20to%20the%20striation-mode%20at%20%5Cu03d50%20%3D%20180%20V.%20Although%20Ohmic%20power%20absorption%20is%20found%20to%20be%20the%20dominant%20electron%20power%20absorption%20mechanism%20in%20the%20parameter%20range%20considered%2C%20the%20electron%20power%20absorption%20mode%20transition%20can%20be%20inferred%20from%20the%20behaviour%20of%20the%20spatio-temporally%20averaged%20ambipolar%20power%20absorption%20as%20a%20function%20of%20the%20voltage%20amplitude.%20Furthermore%2C%20it%20is%20shown%2C%20that%20as%20a%20consequence%20of%20the%20presence%20of%20striations%2C%20the%20temporal%20modulation%20of%20the%20electron%20density%20leads%20to%20a%20temporal%20modulation%20of%20the%20ambipolar%20electric%20field%2C%20which%20is%20responsible%20for%20the%20striated%20structures%20of%20various%20physical%20quantities%20related%20to%20electrons%2C%20such%20as%20the%20electron%20temperature%20and%20the%20ionization%20source%20function.%22%2C%22date%22%3A%222024-04-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad3c69%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad3c69%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-05-08T11%3A58%3A31Z%22%7D%7D%2C%7B%22key%22%3A%225X5H5NC7%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Derzsi%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDerzsi%2C%20A.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Masheyeva%2C%20R.%2C%20Horv%26%23xE1%3Bth%2C%20B.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Hartmann%2C%20P.%20%282024%29.%20Frequency-dependent%20electron%20power%20absorption%20mode%20transitions%20in%20capacitively%20coupled%20argon-oxygen%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%282%29%2C%20025005.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1fd5%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1fd5%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D5X5H5NC7%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Frequency-dependent%20electron%20power%20absorption%20mode%20transitions%20in%20capacitively%20coupled%20argon-oxygen%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%22%2C%22lastName%22%3A%22Masheyeva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%22%2C%22lastName%22%3A%22Horv%5Cu00e1th%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%5D%2C%22abstractNote%22%3A%22Phase%20Resolved%20Optical%20Emission%20Spectroscopy%20%28PROES%29%20measurements%20combined%20with%201d3v%20Particle-in-Cell%5C%2FMonte%20Carlo%20Collisions%20simulations%20are%20performed%20to%20investigate%20the%20excitation%20dynamics%20in%20low-pressure%20capacitively%20coupled%20plasmas%20%28CCPs%29%20in%20argon-oxygen%20mixtures.%20The%20system%20used%20for%20this%20study%20is%20a%20geometrically%20symmetric%20CCP%20reactor%20operated%20in%20a%2070%25%20Ar-30%25%20O2%20mixture%20at%20120%20Pa%2C%20applying%20a%20peak-to-peak%20voltage%20of%20350%20V%2C%20with%20a%20wide%20range%20of%20driving%20RF%20frequencies%20%282%20MHz%20%5Cu2a7d%20f%20%5Cu2a7d%2015%20MHz%29.%20The%20measured%20and%20calculated%20spatio-temporal%20distributions%20of%20the%20electron%20impact%20excitation%20rates%20from%20the%20Ar%20ground%20state%20to%20the%20Ar%202p1%20level%20show%20good%20qualitative%20agreement.%20The%20distributions%20show%20significant%20frequency%20dependence%2C%20which%20is%20generally%20considered%20to%20be%20predictive%20of%20transitions%20in%20the%20dominant%20discharge%20operating%20mode.%20Three%20frequency%20ranges%20can%20be%20distinguished%2C%20showing%20distinctly%20different%20excitation%20characteristics%3A%20%28i%29%20in%20the%20low%20frequency%20range%20%28f%20%5Cu2a7d%203%20MHz%29%2C%20excitation%20is%20strong%20at%20the%20sheaths%20and%20weak%20in%20the%20bulk%20region%3B%20%28ii%29%20at%20intermediate%20frequencies%20%283.5%20MHz%20%5Cu2a7d%20f%20%5Cu2a7d%205%20MHz%29%2C%20the%20excitation%20rate%20in%20the%20bulk%20region%20is%20enhanced%20and%20shows%20striation%20formation%3B%20%28iii%29%20above%206%20MHz%2C%20excitation%20in%20the%20bulk%20gradually%20decreases%20with%20increasing%20frequency.%20Boltzmann%20term%20analysis%20was%20performed%20to%20quantify%20the%20frequency-dependent%20contributions%20of%20the%20Ohmic%20and%20ambipolar%20terms%20to%20the%20electron%20power%20absorption.%22%2C%22date%22%3A%222024-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad1fd5%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1fd5%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-02-05T15%3A28%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22866TPMIV%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schulenberg%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-12%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchulenberg%2C%20D.%20A.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Klich%2C%20M.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Klotz%2C%20J.%2C%20Bibinov%2C%20N.%2C%20Mussenbrock%2C%20T.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282024%29.%20Mode%20Transition%20Induced%20by%20Gas%20Heating%20Along%20the%20Discharge%20Channel%20in%20Capacitively%20Coupled%20Atmospheric%20Pressure%20Micro%20Plasma%20Jets.%20%3Ci%3EPlasma%20Chemistry%20and%20Plasma%20Processing%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10444-6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10444-6%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D866TPMIV%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mode%20Transition%20Induced%20by%20Gas%20Heating%20Along%20the%20Discharge%20Channel%20in%20Capacitively%20Coupled%20Atmospheric%20Pressure%20Micro%20Plasma%20Jets%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20A.%22%2C%22lastName%22%3A%22Schulenberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximilian%22%2C%22lastName%22%3A%22Klich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jeldrik%22%2C%22lastName%22%3A%22Klotz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22The%20effects%20of%20neutral%20gas%20heating%20along%20the%20direction%20of%20the%20gas%20flow%20inside%20the%20discharge%20channel%20of%20a%20parallel%20plate%20micro%20atmospheric%20pressure%20plasma%20jet%2C%20the%20COST-jet%2C%20on%20the%20spatio-temporal%20dynamics%20of%20energetic%20electrons%20are%20investigated%20by%20experiments%20and%20simulations.%20The%20plasma%20source%20is%20driven%20by%20a%20single%20frequency%20sinusoidal%20voltage%20waveform%20at%2013.56%20MHz%20in%20helium%20with%20an%20admixture%20%280.05%5Cu20130.2%25%29%20of%20nitrogen.%20Optical%20emission%20spectroscopy%20measurements%20are%20applied%20to%20determine%20the%20spatio-temporally%20resolved%20electron%20impact%20excitation%20dynamics%20from%20the%20ground%20state%20into%20the%20He%20I%20%283s%293S1%20state%20and%20the%20rotational%20temperature%20of%20nitrogen%20molecules%20at%20different%20positions%20along%20the%20direction%20of%20the%20gas%20flow%20inside%20the%2030%20mm%20long%20discharge%20channel.%20The%20gas%20temperature%2C%20which%20is%20assumed%20to%20be%20equal%20to%20the%20N%5Cu200a2%20rotational%20temperature%2C%20is%20found%20to%20increase%20along%20the%20discharge%20channel.%20This%20effect%20is%20attenuated%20as%20the%20nitrogen%20concentration%20is%20increased%20in%20the%20gas%20mixture%2C%20leading%20to%20an%20eventually%20constant%20temperature%20profile.%20The%20experimental%20data%20also%20reveal%20a%20plasma%20operating%20mode%20transition%20along%20the%20discharge%20channel%20from%20the%20%5Cu03a9%5Cu200a-%20to%20the%20Penning-mode%20and%20show%20good%20agreement%20with%20the%20results%20of%201d3v%20kinetic%20simulations%2C%20which%20spatially%20resolve%20the%20inter-electrode%20space%20and%20use%20the%20gas%20temperature%20as%20an%20input%20value.%20The%20simulations%20demonstrate%20that%20the%20increase%20of%20the%20gas%20temperature%20leads%20to%20the%20observed%20mode%20transition.%20The%20results%20suggest%20the%20possibility%20of%20using%20the%20nitrogen%20admixture%20and%20the%20feed%20gas%20temperature%20as%20additional%20control%20parameters%2C%20%28i%29%20to%20tailor%20the%20plasma%20operating%20mode%20along%20the%20direction%20of%20the%20gas%20flow%20so%20that%20the%20production%20of%20specific%20radicals%20is%20optimized%3B%20and%20%28ii%29%20to%20control%20the%20final%20gas%20temperature%20of%20the%20effluent.%20The%20latter%20could%20be%20particularly%20interesting%20for%20biological%20applications%2C%20where%20the%20upper%20gas%20temperature%20limit%20is%20dictated%20by%20the%20rather%20low%20thermal%20damage%20threshold%20of%20the%20treated%20material.%22%2C%22date%22%3A%222024-01-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs11090-023-10444-6%22%2C%22ISSN%22%3A%220272-4324%2C%201572-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs11090-023-10444-6%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-01-14T09%3A59%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22IL8X4JW5%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Schulenberg%2C%20D.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Korolov%2C%20I.%2C%20Hartmann%2C%20P.%2C%20Schulze%2C%20J.%2C%20%26amp%3B%20Mussenbrock%2C%20T.%20%282024%29.%20A%20new%202D%20fluid-MC%20hybrid%20approach%20for%20simulating%20nonequilibrium%20atmospheric%20pressure%20plasmas%3A%20density%20distribution%20of%20atomic%20oxygen%20in%20radio-frequency%20plasma%20jets%20in%20He%5C%2FO%20%3Csub%3E2%3C%5C%2Fsub%3E%20mixtures.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%281%29%2C%20015012.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1f37%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1f37%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DIL8X4JW5%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20new%202D%20fluid-MC%20hybrid%20approach%20for%20simulating%20nonequilibrium%20atmospheric%20pressure%20plasmas%3A%20density%20distribution%20of%20atomic%20oxygen%20in%20radio-frequency%20plasma%20jets%20in%20He%5C%2FO%20%3Csub%3E2%3C%5C%2Fsub%3E%20mixtures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Schulenberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%5D%2C%22abstractNote%22%3A%22A%20spatially%20two%20dimensional%20fluid-MC%20hybrid%20%28fluid-kinetic%29%20simulation%20method%20is%20developed%20and%20applied%20to%20the%20COST%20reference%20microplasma%20jet%20operated%20in%20helium%20with%20an%20oxygen%20admixture%20of%200.5%25%2C%20excited%20by%20a%20single%20frequency%20voltage%20waveform%20with%20f%20%3D%2013.56%20MHz%20and%20%5Cu03d5rms%20%3D%20275%20V.%22%2C%22date%22%3A%222024-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad1f37%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1f37%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-01-30T19%3A02%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22PFHKJZ3C%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dujko%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDujko%2C%20S.%2C%20Bo%26%23x161%3Bnjakovi%26%23x107%3B%2C%20D.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Hartmann%2C%20P.%2C%20Korolov%2C%20I.%2C%20Pinh%26%23xE3%3Bo%2C%20N.%20R.%2C%20Loffhagen%2C%20D.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282023%29.%20Scanning%20drift%20tube%20measurements%20and%20kinetic%20studies%20of%20electron%20transport%20in%20CO.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%282%29%2C%20025014.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Facbc96%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Facbc96%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DPFHKJZ3C%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Scanning%20drift%20tube%20measurements%20and%20kinetic%20studies%20of%20electron%20transport%20in%20CO%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Dujko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Bo%5Cu0161njakovi%5Cu0107%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N%20R%22%2C%22lastName%22%3A%22Pinh%5Cu00e3o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Loffhagen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20scanning%20drift%20tube%20measurements%20of%20electron%20swarm%20transport%20coefficients%20in%20CO%20as%20a%20function%20of%20the%20reduced%20electric%20field%20E%5C%2FN%20at%20room%20temperature%20under%20time-of-flight%20conditions.%20The%20measurements%20are%20compared%20to%20modeling%20results%20and%20other%20available%20experimental%20data%20on%20swarm%20transport%20over%20the%20broad%20range%20of%20E%5C%2FN%20from%202%20Td%20to%201603%20Td.%20The%20modeling%20results%20are%20obtained%20in%20Monte%20Carlo%20simulations%20and%20by%20solving%20the%20electron%20Boltzmann%20equation%20using%20a%20multi-term%20approach%20and%20the%20density%20gradient%20expansion%20procedure.%20We%20find%20generally%20good%20agreement%20between%20the%20measured%20and%20calculated%20transport%20coefficients.%20We%20propose%20a%20strategy%20to%20improve%20the%20cross-section%20set%20used%20to%20explain%20certain%20discrepancies%20at%20lower%20E%5C%2FN%20values.%20Measurements%20and%20calculations%20of%20electron%20transport%20coefficients%20under%20hydrodynamic%20conditions%20are%20complemented%20by%20Monte%20Carlo%20simulations%20of%20electron%20transport%20in%20an%20idealized%20steady-state%20Townsend%20%28SST%29%20setup.%20The%20ionization%20coefficient%20is%20calculated%20as%20a%20function%20of%20E%5C%2FN%20from%20the%20spatial%20density%20profiles%20of%20the%20electrons%20and%20compared%20to%20the%20corresponding%20values%20evaluated%20from%20the%20knowledge%20of%20the%20effective%20ionization%20frequency%2C%20drift%20velocity%20and%20longitudinal%20diffusion%20coefficient.%20Contrary%20to%20the%20traditional%20views%2C%20according%20to%20which%20the%20spatial%20relaxation%20of%20the%20mean%20energy%20and%20other%20transport%20properties%20for%20electrons%20in%20molecular%20gases%20is%20most%20commonly%20monotonic%20or%20quasi-monotonic%2C%20we%20find%20a%20%5Cu2018window%5Cu2019%20of%20E%5C%2FN%20where%20the%20SST%20transport%20properties%20of%20the%20electrons%20exhibit%20oscillatory%20behavior%20as%20they%20relax%20towards%20the%20equilibrium%20state%20far%20downstream%20from%20the%20electron%20emitting%20boundary.%22%2C%22date%22%3A%222023-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Facbc96%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Facbc96%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-16T18%3A57%3A43Z%22%7D%7D%2C%7B%22key%22%3A%2228DCYBSA%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELiu%2C%20Y.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20H%26%23xFC%3Bbner%2C%20G.%2C%20Schulenberg%2C%20D.%2C%20Hemke%2C%20T.%2C%20Bischoff%2C%20L.%2C%20Chur%2C%20S.%2C%20Steuer%2C%20D.%2C%20Golda%2C%20J.%2C%20B%26%23xF6%3Bke%2C%20M.%2C%20Schulze%2C%20J.%2C%20Korolov%2C%20I.%2C%20%26amp%3B%20Mussenbrock%2C%20T.%20%282023%29.%20Local%20enhancement%20of%20electron%20heating%20and%20neutral%20species%20generation%20in%20radio-frequency%20micro-atmospheric%20pressure%20plasma%20jets%3A%20the%20effects%20of%20structured%20electrode%20topologies.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%282%29%2C%20025012.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Facb9b8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Facb9b8%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D28DCYBSA%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Local%20enhancement%20of%20electron%20heating%20and%20neutral%20species%20generation%20in%20radio-frequency%20micro-atmospheric%20pressure%20plasma%20jets%3A%20the%20effects%20of%20structured%20electrode%20topologies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yue%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerrit%22%2C%22lastName%22%3A%22H%5Cu00fcbner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Schulenberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Torben%22%2C%22lastName%22%3A%22Hemke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lena%22%2C%22lastName%22%3A%22Bischoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sascha%22%2C%22lastName%22%3A%22Chur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Steuer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Judith%22%2C%22lastName%22%3A%22Golda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marc%22%2C%22lastName%22%3A%22B%5Cu00f6ke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20effects%20of%20structured%20electrode%20topologies%20on%20He%5C%2FO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radio%20frequency%20micro-atmospheric%20pressure%20plasma%20jets%20driven%20at%2013.56%5Cu2009MHz%20are%20investigated%20by%20a%20combination%20of%202D%20fluid%20simulations%20and%20experiments.%20Good%20qualitative%20agreement%20is%20found%20between%20the%20computational%20and%20experimental%20results%20for%20the%202D%20spatio-temporally%20resolved%20dynamics%20of%20energetic%20electrons%20measured%20by%20phase%20resolved%20optical%20emission%20spectroscopy%2C%202D%20spatially%20resolved%20helium%20metastable%20densities%20measured%20by%20tunable%20diode%20laser%20absorption%20spectroscopy%20and%202D%20spatially%20resolved%20atomic%20oxygen%20densities%20measured%20by%20two%20photon%20absorption%20laser%20induced%20fluorescence.%20The%20presence%20of%20rectangular%20trenches%20of%20specific%20dimensions%20inside%20the%20electrodes%20is%20found%20to%20cause%20a%20local%20increase%20of%20the%20electron%20power%20absorption%20inside%20and%20above%5C%2Fbelow%20these%20surface%20structures.%20This%20method%20of%20controlling%20the%20electron%20energy%20distribution%20function%20via%20tailored%20surface%20topologies%20leads%20to%20a%20local%20increase%20of%20the%20metastable%20and%20atomic%20oxygen%20densities.%20A%20linear%20combination%20of%20trenches%20along%20the%20direction%20of%20the%20gas%20flow%20is%20found%20to%20result%20in%20an%20increase%20of%20the%20atomic%20oxygen%20density%20in%20the%20effluent%2C%20depending%20linearly%20on%20the%20number%20of%20trenches.%20These%20findings%20are%20explained%20by%20an%20enhanced%20Ohmic%20electric%20field%20inside%20each%20trench%2C%20originating%20from%20%28a%29%20the%20low%20electron%20density%2C%20and%2C%20consequently%2C%20the%20low%20plasma%20conductivity%20inside%20the%20trenches%2C%20and%20%28b%29%20the%20presence%20of%20a%20current%20focusing%20effect%20as%20a%20result%20of%20the%20electrode%20topology.%22%2C%22date%22%3A%222023-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Facb9b8%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Facb9b8%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-03-04T09%3A42%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22TZ2KXQWQ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wang%2C%20L.%2C%20Wilczek%2C%20S.%2C%20Lafleur%2C%20T.%2C%20Brinkmann%2C%20R.%20P.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282022%29.%20Frequency%20coupling%20in%20low-pressure%20dual-frequency%20capacitively%20coupled%20plasmas%20revisited%20based%20on%20the%20Boltzmann%20term%20analysis.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%2811%29%2C%20115004.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac9754%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac9754%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DTZ2KXQWQ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Frequency%20coupling%20in%20low-pressure%20dual-frequency%20capacitively%20coupled%20plasmas%20revisited%20based%20on%20the%20Boltzmann%20term%20analysis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%20Peter%22%2C%22lastName%22%3A%22Brinkmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22Electron%20power%20absorption%20dynamics%20is%20investigated%20in%20radio-frequency%20%28RF%29%20argon%20capacitively%20coupled%20plasmas%20%28CCPs%29%20at%20low%20pressure%20%284%5Cu201370%20Pa%29%20excited%20by%20a%20dual-frequency%20waveform%20with%20frequencies%20of%2027.12%20MHz%20and%201.937%20MHz.%20Based%20on%20the%20spatio-temporal%20dynamics%20of%20the%20ambipolar%20electric%20field%20a%20novel%20interpretation%20of%20the%20mechanism%20of%20frequency%20coupling%20is%20given%2C%20which%20is%20not%20based%20on%20the%20hard%20wall%20model%2C%20as%20in%20previous%20explanations.%20Within%20this%20framework%2C%20frequency%20coupling%20arises%20due%20to%20the%20decreased%20size%20of%20the%20ambipolar%20region%20outside%20the%20sheath%20when%20the%20low-frequency%20sheath%20is%20close%20to%20its%20full%20expansion%2C%20which%20leads%20to%20decreased%20ionization%20in%20this%20region.%20It%20is%20shown%2C%20under%20the%20circumstances%20considered%20here%2C%20ohmic%20power%20absorption%20is%20dominant.%20The%20spatio-temporally%20averaged%20ambipolar%20power%20absorption%20shows%20nonmonotonic%20behaviour%20as%20a%20function%20of%20pressure%2C%20first%20increasing%2C%20then%2C%20after%20reaching%20a%20local%20maximum%2C%20decreasing%20as%20the%20pressure%20is%20increased.%20It%20is%20shown%2C%20that%20the%20reason%20for%20this%20nonmonotonic%20behaviour%20is%20ultimately%20connected%20to%20the%20frequency%20coupling%20mechanism.%22%2C%22date%22%3A%222022-11-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac9754%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac9754%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-11-09T16%3A14%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22DNM8AMLS%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20L.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Lafleur%2C%20T.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Song%2C%20Y.-H.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282022%29.%20On%20the%20validity%20of%20the%20classical%20plasma%20conductivity%20in%20capacitive%20RF%20discharges.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%2810%29%2C%20105013.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac95c1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac95c1%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DDNM8AMLS%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22On%20the%20validity%20of%20the%20classical%20plasma%20conductivity%20in%20capacitive%20RF%20discharges%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuan-Hong%22%2C%22lastName%22%3A%22Song%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22The%20plasma%20conductivity%20is%20an%20important%20input%20parameter%20for%20various%20plasma%20models.%20It%20is%20typically%20obtained%20from%20a%20simplified%20version%20of%20the%20electron%20momentum%20balance%20equation%2C%20where%20only%20a%20single%20inertia%20term%20and%20a%20simplified%20description%20of%20the%20collisional%20momentum%20transfer%20are%20included.%20The%20electric%20field%20is%20assumed%20to%20be%20a%20harmonic%20function%20of%20the%20driving%20frequency%2C%20higher%20harmonics%20of%20the%20current%20and%20spatial%20variations%20are%20neglected.%20Through%20particle-in-cell%5C%2FMonte%20Carlo%20collision%20%28PIC%5C%2FMCC%29%20simulations%20and%20analysis%20of%20the%20electric%20field%20generation%20based%20on%20velocity%20moments%20of%20the%20Boltzmann%20equation%2C%20the%20validity%20of%20this%20classical%20model%20is%20studied%20in%20capacitively%20coupled%20plasmas%20%28CCPs%29.%20We%20find%20that%20these%20assumptions%5C%2Fsimplifications%20result%20in%20significant%20inaccuracies%20of%20the%20conductivity%20in%20many%20cases.%20In%20single%20frequency%20CCPs%2C%20a%20deviation%20of%20more%20than%20an%20order%20of%20magnitude%20from%20the%20effective%20PIC-conductivity%20obtained%20from%20the%20simulations%20is%20found%20at%20low%20pressures%20in%20the%20discharge%20center%20and%20at%20the%20maximum%20sheath%20edge.%20In%20the%20center%2C%20this%20deviation%20is%20caused%20by%20neglecting%20the%20temperature%20gradient%20term%20in%20the%20momentum%20balance%20equation%20and%20adopting%20an%20approximation%20of%20the%20Ohmic%20term%20in%20the%20classical%20model%2C%20while%20at%20the%20maximum%20sheath%20edge%20it%20is%20induced%20by%20neglecting%20the%20density%20gradient%20term%20that%20accounts%20for%20the%20effect%20of%20the%20ambipolar%20electric%20field.%20The%20inaccuracy%20in%20the%20discharge%20center%20is%20reduced%20at%20higher%20pressures%20where%20the%20Ohmic%20term%20dominates%20and%20the%20approximations%20made%20in%20the%20classical%20model%20are%20more%20applicable.%20Better%20performance%20of%20the%20classical%20model%20is%20also%20found%20under%20conditions%20at%20which%20the%20inertia%20term%20included%20in%20the%20model%20plays%20an%20important%20role.%20Generally%2C%20neglecting%20higher%20harmonics%20of%20the%20current%20and%20spatial%20variations%20of%20plasma%20parameters%20is%20found%20to%20cause%20strong%20inaccuracies.%20Thus%2C%20the%20classical%20model%20can%20result%20in%20an%20inaccurate%20calculation%20of%20the%20power%20absorbed%20by%20electrons.%20Our%20results%20indicate%20that%20its%20applicability%20must%20be%20evaluated%20for%20a%20given%20set%20of%20conditions%20before%20using%20it%20to%20avoid%20introducing%20errors%20to%20plasma%20models.%22%2C%22date%22%3A%222022-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac95c1%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac95c1%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-10-24T06%3A07%3A37Z%22%7D%7D%2C%7B%22key%22%3A%224SKI9N9V%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20L.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Hartmann%2C%20P.%2C%20Derzsi%2C%20A.%2C%20Song%2C%20Y.-H.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282022%29.%20Electropositive%20core%20in%20electronegative%20magnetized%20capacitive%20radio%20frequency%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%286%29%2C%2006LT01.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5ec7%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5ec7%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D4SKI9N9V%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electropositive%20core%20in%20electronegative%20magnetized%20capacitive%20radio%20frequency%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuan-Hong%22%2C%22lastName%22%3A%22Song%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22The%20magnetized%20drift-ambipolar%20%28%5Cu2018m-DA%5Cu2019%29%20electron%20power%20absorption%20mode%20and%20a%20sequence%20of%20structural%20transitions%2C%20including%20the%20formation%20of%20an%20electropositive%20core%20where%20the%20electron%20density%20is%20much%20higher%20than%20the%20negative%20ion%20density%2C%20are%20identified%20in%20a%20magnetized%20capacitive%20Radio-Frequency%20%28RF%29%20plasma%20of%20a%20strongly%20electronegative%20gas%2C%20CF4.%20The%20m-DA%20mode%20is%20caused%20by%20a%20magnetic%20enhancement%20of%20the%20bulk%20electric%20field%20due%20to%20the%20attenuation%20of%20the%20electron%20transport%20and%20plasma%20conductivity%20across%20the%20magnetic%20field.%20This%20leads%20to%20the%20formation%20of%20ionization%20maxima%20at%20distinct%20axial%20positions%20and%20a%20local%20trapping%20of%20electrons%20by%20the%20magnetic%20field%20as%20a%20function%20of%20its%20strength.%22%2C%22date%22%3A%222022-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac5ec7%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5ec7%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-06-16T18%3A33%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22B3AMW3FU%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Palla%2C%20P.%2C%20%26amp%3B%20Hartmann%2C%20P.%20%282022%29.%20Revisiting%20the%20numerical%20stability%5C%2Faccuracy%20conditions%20of%20explicit%20PIC%5C%2FMCC%20simulations%20of%20low-temperature%20gas%20discharges.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%286%29%2C%20064001.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6e85%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6e85%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DB3AMW3FU%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Revisiting%20the%20numerical%20stability%5C%2Faccuracy%20conditions%20of%20explicit%20PIC%5C%2FMCC%20simulations%20of%20low-temperature%20gas%20discharges%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Palla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%5D%2C%22abstractNote%22%3A%22Particle-in-cell%20%28PIC%29%20with%20Monte%20Carlo%20collisions%20is%20a%20fully%20kinetic%2C%20particle%20based%20numerical%20simulation%20method%20with%20increasing%20popularity%20in%20the%20field%20of%20low%20temperature%20gas%20discharge%20physics.%20Already%20in%20its%20simplest%20form%20%28electrostatic%2C%20one-dimensional%20geometry%2C%20and%20explicit%20time%20integration%29%2C%20it%20can%20properly%20describe%20a%20wide%20variety%20of%20complex%2C%20non-local%2C%20non-linear%20phenomena%20in%20electrical%20gas%20discharges%20at%20the%20microscopic%20level%20with%20high%20accuracy.%20However%2C%20being%20a%20numerical%20model%20working%20with%20discretized%20temporal%20and%20%28partially%29%20spatial%20coordinates%2C%20its%20stable%20and%20accurate%20operation%20largely%20depends%20on%20the%20choice%20of%20several%20model%20parameters.%20Starting%20from%20four%20selected%20base%20cases%20of%20capacitively%20coupled%2C%20radio%20frequency%20driven%20argon%20discharges%2C%20representing%20low%20and%20intermediate%20pressure%20and%20voltage%20situations%2C%20we%20discuss%20the%20effect%20of%20the%20variation%20of%20a%20set%20of%20simulation%20parameters%20on%20the%20plasma%20density%20distribution%20and%20the%20electron%20energy%20probability%20function.%20The%20simulation%20parameters%20include%20the%20temporal%20and%20spatial%20resolution%2C%20the%20PIC%20superparticle%20weight%20factor%2C%20as%20well%20as%20the%20electron%20reflection%20and%20the%20ion-induced%20electron%20emission%20coefficients%2C%20characterizing%20plasma%5Cu2013surface%20interactions.%22%2C%22date%22%3A%222022-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac6e85%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6e85%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-06-02T11%3A05%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22QAQXJM7R%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Derzsi%2C%20A.%2C%20Horv%26%23xE1%3Bth%2C%20B.%2C%20Hartmann%2C%20P.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282022%29.%20Evolution%20of%20the%20bulk%20electric%20field%20in%20capacitively%20coupled%20argon%20plasmas%20at%20intermediate%20pressures.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%284%29%2C%20045017.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6361%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6361%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DQAQXJM7R%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evolution%20of%20the%20bulk%20electric%20field%20in%20capacitively%20coupled%20argon%20plasmas%20at%20intermediate%20pressures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedek%22%2C%22lastName%22%3A%22Horv%5Cu00e1th%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22The%20physical%20characteristics%20of%20an%20argon%20discharge%20excited%20by%20a%20single-frequency%20harmonic%20waveform%20in%20the%20low-intermediate%20pressure%20regime%20%285%5Cu2013250%20Pa%29%20are%20investigated%20using%20particle-in-cell%5C%2FMonte%20Carlo%20collisions%20simulations.%20It%20is%20found%20that%2C%20when%20the%20pressure%20is%20increased%2C%20a%20non-negligible%20bulk%20electric%20field%20develops%20due%20to%20the%20presence%20of%20a%20%5Cu2018passive%20bulk%5Cu2019%2C%20where%20a%20plateau%20of%20constant%20electron%20density%20forms.%20As%20the%20pressure%20is%20increased%2C%20the%20ionization%20in%20the%20bulk%20region%20decreases%20%28due%20to%20the%20shrinking%20of%20the%20energy%20relaxation%20length%20of%20electrons%20accelerated%20within%20the%20sheaths%20and%20at%20the%20sheath%20edges%29%2C%20while%20the%20excitation%20rate%20increases%20%28due%20to%20the%20increase%20of%20the%20bulk%20electric%20field%29.%20Using%20the%20Fourier%20spectrum%20of%20the%20discharge%20current%2C%20the%20phase%20shift%20between%20the%20current%20and%20the%20driving%20voltage%20waveform%20is%20calculated%2C%20which%20shows%20that%20the%20plasma%20gets%20more%20resistive%20in%20this%20regime.%20The%20phase%20shift%20and%20the%20%28wavelength-integrated%29%20intensity%20of%20the%20optical%20emission%20from%20the%20plasma%20are%20also%20obtained%20experimentally.%20The%20good%20qualitative%20agreement%20of%20these%20data%20with%20the%20computed%20characteristics%20verifies%20the%20simulation%20model.%20Using%20the%20Boltzmann%20term%20analysis%20method%2C%20we%20find%20that%20the%20bulk%20electric%20field%20is%20an%20Ohmic%20field%20and%20that%20the%20peculiar%20shape%20of%20the%20plasma%20density%20profile%20is%20partially%20a%20consequence%20of%20the%20spatio-temporal%20distribution%20of%20the%20ambipolar%20electric%20field.%22%2C%22date%22%3A%222022-04-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac6361%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac6361%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-05-04T16%3A17%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22WW2GEW7H%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Derzsi%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDerzsi%2C%20A.%2C%20Hartmann%2C%20P.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Horv%26%23xE1%3Bth%2C%20B.%2C%20Gyulai%2C%20M.%2C%20Korolov%2C%20I.%2C%20Schulze%2C%20J.%2C%20%26amp%3B%20Donko%2C%20Z.%20%282022%29.%20Electron%20power%20absorption%20in%20capacitively%20coupled%20neon%26%23x2013%3Boxygen%20plasmas%3A%20a%20comparison%20of%20experimental%20and%20computational%20results.%20%3Ci%3EPlasma%20Sources%20Sci.%20Technol.%3C%5C%2Fi%3E%2C%2022.%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DWW2GEW7H%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20power%20absorption%20in%20capacitively%20coupled%20neon%5Cu2013oxygen%20plasmas%3A%20a%20comparison%20of%20experimental%20and%20computational%20results%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%22%2C%22lastName%22%3A%22Horv%5Cu00e1th%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Gyulai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donko%22%7D%5D%2C%22abstractNote%22%3A%22Phase%20resolved%20optical%20emission%20spectroscopy%20%28PROES%29%20measurements%20combined%20with%201d3v%20particle-in-cell%5C%2FMonte%20Carlo%20collisions%20%28PIC%5C%2FMCC%29%20simulations%20are%20used%20to%20study%20the%20electron%20power%20absorption%20and%20excitation%5C%2Fionization%20dynamics%20in%20capacitively%20coupled%20plasmas%20%28CCPs%29%20in%20mixtures%20of%20neon%20and%20oxygen%20gases.%20The%20study%20is%20performed%20for%20a%20geometrically%20symmetric%20CCP%20reactor%20with%20a%20gap%20length%20of%202.5%20cm%20at%20a%20driving%20frequency%20of%2010%20MHz%20and%20a%20peak-to-peak%20voltage%20of%20350%20V.%20The%20pressure%20of%20the%20gas%20mixture%20is%20varied%20between%2015%20Pa%20and%20500%20Pa%2C%20while%20the%20neon%5C%2Foxygen%20concentration%20is%20tuned%20between%2010%25%20and%2090%25.%20For%20all%20discharge%20conditions%2C%20the%20spatio-temporal%20distributions%20of%20the%20electron-impact%20excitation%20rate%20from%20the%20Ne%20ground%20state%20into%20the%20Ne%202p53p0%20state%20measured%20by%20PROES%20and%20obtained%20from%20PIC%5C%2FMCC%20simulations%20show%20good%20qualitative%20agreement.%20Based%20on%20the%20emission%5C%2Fexcitation%20patterns%2C%20multiple%20operation%20regimes%20are%20identified.%20Localized%20bright%20emission%20features%20at%20the%20bulk%20boundaries%2C%20caused%20by%20local%20maxima%20in%20the%20electronegativity%20are%20found%20at%20high%20pressures%20and%20high%20O2%20concentrations.%20The%20relative%20contributions%20of%20the%20ambipolar%20and%20the%20Ohmic%20electron%20power%20absorption%20are%20found%20to%20vary%20strongly%20with%20the%20discharge%20parameters%3A%20the%20Ohmic%20power%20absorption%20is%20enhanced%20by%20both%20the%20high%20collisionality%20at%20high%20pressures%20and%20the%20high%20electronegativity%20at%20low%20pressures.%20In%20the%20wide%20parameter%20regime%20covered%20in%20this%20study%2C%20the%20PROES%20measurements%20are%20found%20to%20accurately%20represent%20the%20ionization%20dynamics%2C%20i.e.%20the%20discharge%20operation%20mode.%20This%20work%20represents%20also%20a%20successful%20experimental%20validation%20of%20the%20discharge%20model%20developed%20for%20neon%5Cu2013oxygen%20CCPs.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-09-14T07%3A55%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22XRBZUDNL%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222021-10-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Schulze%2C%20J.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282021%29.%20Electron%20power%20absorption%20in%20micro%20atmospheric%20pressure%20plasma%20jets%20driven%20by%20tailored%20voltage%20waveforms%20in%20He%5C%2FN%20%3Csub%3E2%3C%5C%2Fsub%3E.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E30%3C%5C%2Fi%3E%2810%29%2C%20105010.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac278c%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac278c%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DXRBZUDNL%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20power%20absorption%20in%20micro%20atmospheric%20pressure%20plasma%20jets%20driven%20by%20tailored%20voltage%20waveforms%20in%20He%5C%2FN%20%3Csub%3E2%3C%5C%2Fsub%3E%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22In%20atmospheric%20pressure%20capacitively-coupled%20microplasma%20jets%2C%20voltage%20waveform%20tailoring%20%28VWT%29%20was%20demonstrated%20to%20provide%20ultimate%20control%20of%20the%20electron%20energy%20distribution%20function%20%28EEDF%29%2C%20which%20allows%20us%20to%20enhance%20and%20adjust%20the%20generation%20of%20selected%20neutral%20species%20by%20controlling%20the%20electron%20power%20absorption%20dynamics.%20However%2C%20at%20the%20fundamental%20level%2C%20the%20physical%20origin%20of%20these%20effects%20of%20VWT%20remained%20unclear.%20Therefore%2C%20in%20this%20work%2C%20the%20electron%20power%20absorption%20dynamics%20is%20investigated%20in%20a%20He%5C%2FN2%20jet%20with%20a%20nitrogen%20concentration%20of%200.05%25%20driven%20by%20a%20valleys%20voltage%20waveform%20at%20a%20base%20frequency%20of%2013.56%20MHz%20for%20different%20numbers%20of%20harmonics%2C%20using%20a%20self-consistent%20particle-in-cell%20simulation%20coupled%20with%20a%20spatio-temporally%20resolved%20analysis%20of%20the%20electron%20power%20absorption%20based%20on%20moments%20of%20the%20Boltzmann%20equation.%20Due%20to%20the%20local%20nature%20of%20the%20transport%20at%20atmospheric%20pressure%2C%20ohmic%20power%20absorption%20is%20dominant.%20Increasing%20the%20number%20of%20harmonics%2C%20due%20to%20the%20peculiar%20shape%20of%20the%20excitation%20waveform%2C%20the%20sheath%20collapse%20at%20the%20grounded%20electrode%20is%20shortened%20relative%20to%20the%20one%20at%20the%20powered%20electrode.%20As%20a%20consequence%2C%20and%20in%20order%20to%20ensure%20flux%20compensation%20of%20electrons%20and%20positive%20ions%20at%20this%20electrode%2C%20a%20high%20current%20is%20driven%20through%20the%20discharge%20at%20the%20time%20of%20this%20short%20sheath%20collapse.%20This%20current%20is%20primarily%20driven%20by%20a%20high%20ohmic%20electric%20field.%20Close%20to%20the%20grounded%20electrode%2C%20where%20the%20electron%20density%20is%20low%20and%20the%20electric%20field%20is%20therefore%20high%2C%20electrons%20are%20accelerated%20to%20high%20energies%20and%20strong%20ionization%2C%20as%20well%20as%20the%20formation%20of%20a%20local%20electron%20density%20maximum%2C%20are%20observed.%20This%20electron%20density%20maximum%20leads%20to%20a%20local%20ambipolar%20electric%20field%20that%20acts%20as%20an%20electric%20field%20reversal%20and%20accelerates%20electrons%20to%20even%20higher%20energies.%20These%20effects%20are%20understood%20in%20detail%20to%20fundamentally%20explain%20the%20unique%20potential%20of%20VWT%20for%20EEDF%20control%20in%20such%20plasmas.%22%2C%22date%22%3A%222021-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac278c%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac278c%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-01-04T09%3A51%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22NW38IHAA%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222021-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20L.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Hartmann%2C%20P.%2C%20Derzsi%2C%20A.%2C%20Song%2C%20Y.-H.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282021%29.%20Magnetic%20attenuation%20of%20the%20self-excitation%20of%20the%20plasma%20series%20resonance%20in%20low-pressure%20capacitively%20coupled%20discharges.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E30%3C%5C%2Fi%3E%2810%29%2C%2010LT01.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac287b%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac287b%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DNW38IHAA%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20attenuation%20of%20the%20self-excitation%20of%20the%20plasma%20series%20resonance%20in%20low-pressure%20capacitively%20coupled%20discharges%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuan-Hong%22%2C%22lastName%22%3A%22Song%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22External%20magnetic%20fields%20impose%20diverse%20effects%20on%20low-temperature%20plasmas.%20We%20study%20these%20in%20a%20low-pressure%20capacitively%20coupled%20radio%20frequency%20plasma%20in%20argon%20via%20self-consistent%20kinetic%20simulations.%20The%20primary%20effect%20of%20the%20transversal%20magnetic%20field%2C%20that%20manifests%20itself%20in%20the%20trapping%20of%20electrons%20at%20lower%20excitation%20frequencies%20and%2C%20thus%2C%20in%20an%20increase%20of%20the%20plasma%20density%20as%20a%20function%20of%20the%20magnetic%20field%2C%20is%20overruled%20at%20higher%20excitation%20frequencies%20by%20the%20attenuation%20of%20the%20self-excitation%20of%20plasma%20series%20resonance%20oscillations%20and%20the%20attenuation%20of%20non-linear%20electron%20resonance%20heating%2C%20which%20lead%20to%20a%20reduced%20plasma%20density.%20At%20higher%20magnetic%20fields%20the%20plasma%20density%20increases%20again%20due%20to%20%28i%29%20a%20longer%20interaction%20time%20between%20the%20electrons%20and%20the%20edges%20of%20the%20expanding%20sheaths%20and%20%28ii%29%20the%20electric%20field%20reversals%20that%20develop%20at%20the%20collapsing%20sheath%20edges%20to%20overcome%20the%20trapping%20of%20electrons%20and%20accelerate%20them%20towards%20the%20electrodes.%22%2C%22date%22%3A%222021-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac287b%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac287b%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-01-04T09%3A51%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22LXJUBJST%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Donko%20et%20al.%22%2C%22parsedDate%22%3A%222021-06-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDonko%2C%20Z.%2C%20Derzsi%2C%20A.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Horv%26%23xE1%3Bth%2C%20B.%2C%20Wilczek%2C%20S.%2C%20Hartmann%2C%20B.%2C%20%26amp%3B%20Hartmann%2C%20P.%20%282021%29.%20eduPIC%3A%20an%20introductory%20particle%20based%20code%20for%20radio-frequency%20plasma%20simulation.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0b55%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0b55%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DLXJUBJST%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22eduPIC%3A%20an%20introductory%20particle%20based%20code%20for%20radio-frequency%20plasma%20simulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zoltan%22%2C%22lastName%22%3A%22Donko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedek%22%2C%22lastName%22%3A%22Horv%5Cu00e1th%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Botond%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%5D%2C%22abstractNote%22%3A%22Particle%20based%20simulations%20are%20indispensable%20tools%20for%20numerical%20studies%20of%20charged%20particle%20swarms%20and%20low-temperature%20plasma%20sources.%20The%20main%20advantage%20of%20such%20approaches%20is%20that%20they%20do%20not%20require%20any%20assumptions%20regarding%20the%20shape%20of%20the%20particle%20Velocity%5C%2FEnergy%20Distribution%20Function%20%28VDF%5C%2FEDF%29%2C%20but%20provide%20these%20basic%20quantities%20of%20kinetic%20theory%20as%20a%20result%20of%20the%20computations.%20Additionally%2C%20they%20can%20provide%2C%20e.g.%2C%20transport%20coe%5Cufb03cients%2C%20under%20arbitrary%20time%20and%20space%20dependence%20of%20the%20electric%5C%2Fmagnetic%20%5Cufb01elds.%20For%20the%20self-consistent%20description%20of%20various%20plasma%20sources%20operated%20in%20the%20low-pressure%20%28nonlocal%2C%20kinetic%29%20regime%2C%20the%20Particle-In-Cell%20simulation%20approach%2C%20combined%20with%20the%20Monte%20Carlo%20treatment%20of%20collision%20processes%20%28PIC%5C%2FMCC%29%2C%20has%20become%20an%20important%20tool%20during%20the%20past%20decades.%20In%20particular%2C%20for%20Radio-Frequency%20%28RF%29%20Capacitively%20Coupled%20Plasma%20%28CCP%29%20systems%20PIC%5C%2FMCC%20is%20perhaps%20the%20primary%20simulation%20tool%20these%20days.%20This%20approach%20is%20able%20to%20describe%20discharges%20over%20a%20wide%20range%20of%20operating%20conditions%2C%20and%20has%20largely%20contributed%20to%20the%20understanding%20of%20the%20physics%20of%20CCPs%20operating%20in%20various%20gases%20and%20their%20mixtures%2C%20in%20chambers%20with%20simple%20and%20complicated%20geometries%2C%20driven%20by%20single-%20and%20multi-frequency%20%28tailored%29%20waveforms.%20PIC%5C%2FMCC%20simulation%20codes%20have%20been%20developed%20and%20maintained%20by%20many%20research%20groups%2C%20some%20of%20these%20codes%20are%20available%20to%20the%20community%20as%20freeware%20resources.%20While%20this%20computational%20approach%20has%20already%20been%20present%20for%20a%20number%20of%20decades%2C%20the%20rapid%20evolution%20of%20the%20computing%20infrastructure%20makes%20it%20increasingly%20more%20popular%20and%20accessible%2C%20as%20simulations%20of%20simple%20systems%20can%20be%20executed%20now%20on%20personal%20computers%20or%20laptops.%20During%20the%20past%20few%20years%20we%20have%20experienced%20an%20increasing%20interest%20in%20lectures%20and%20courses%20dealing%20with%20the%20basics%20of%20particle%20simulations%2C%20including%20the%20PIC%5C%2FMCC%20technique.%20In%20a%20response%20to%20this%2C%20this%20paper%20%28i%29%20provides%20a%20tutorial%20on%20the%20physical%20basis%20and%20the%20algorithms%20of%20the%20PIC%5C%2FMCC%20technique%20and%20%28ii%29%20presents%20a%20basic%20%28spatially%20one-dimensional%29%20electrostatic%20PIC%5C%2FMCC%20simulation%20code%2C%20whose%20source%20is%20made%20freely%20available%20in%20various%20programming%20languages.%20We%20share%20the%20code%20in%20C%5C%2FC%2B%2B%20versions%2C%20as%20well%20as%20in%20a%20version%20written%20in%20Rust%2C%20which%20is%20a%20rapidly%20emerging%20computational%20language.%20Our%20code%20intends%20to%20be%20a%20%5Cu201cstarting%20tool%5Cu201d%20for%20those%20who%20are%20interested%20in%20learning%20the%20details%20of%20the%20PIC%5C%2FMCC%20technique%20and%20would%20like%20to%20develop%20the%20%5Cu201cskeleton%5Cu201d%20code%20further%2C%20for%20their%20research%20purposes.%20Following%20the%20description%20of%20the%20physical%20basis%20and%20the%20algorithms%20used%20in%20the%20code%2C%20a%20few%20examples%20of%20results%20obtained%20with%20this%20code%20for%20single-%20and%20dual-frequency%20CCPs%20in%20argon%20are%20also%20given.%22%2C%22date%22%3A%222021-06-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac0b55%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0b55%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T05%3A42%3A02Z%22%7D%7D%2C%7B%22key%22%3A%22YH83TJCY%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222021-06-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Lafleur%2C%20T.%2C%20Brinkmann%2C%20R.%20P.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282021%29.%20Collisional%20electron%20momentum%20loss%20in%20low%20temperature%20plasmas%3A%20on%20the%20validity%20of%20the%20classical%20approximation.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E30%3C%5C%2Fi%3E%286%29%2C%20065015.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0486%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0486%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DYH83TJCY%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Collisional%20electron%20momentum%20loss%20in%20low%20temperature%20plasmas%3A%20on%20the%20validity%20of%20the%20classical%20approximation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%20Peter%22%2C%22lastName%22%3A%22Brinkmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22The%20electron%20momentum%20loss%20obtained%20from%20kinetic%20simulations%2C%20as%20well%20as%20the%20classical%20approximation%20based%20on%20the%20electron%5Cu2013neutral%20collision%20frequency%2C%20are%20calculated%20and%20compared%20in%20low%20pressure%20capacitively%20coupled%20plasmas%20in%20argon%2C%20helium%20and%20oxygen%20gases.%20The%20classical%20approximation%20%28which%20is%20commonly%20used%20in%20theoretical%20or%20numerical%20fluid%20models%29%20exaggerates%20the%20role%20of%20low-energy%20electrons%20and%20can%20lead%20to%20a%20significantly%20lower%20momentum%20loss%20compared%20to%20the%20exact%20momentum%20loss%20depending%20on%20the%20gas%20used%2C%20even%20if%20the%20exact%20electron%20distribution%20function%20is%20known.%20This%20leads%20to%20an%20underestimation%20of%20the%20Ohmic%20power%20absorption%20and%20a%20change%20in%20the%20harmonic%20content%20of%20the%20momentum%20loss%20as%20revealed%20by%20Fourier%20analysis.%20For%20argon%2C%20the%20classical%20approximation%20is%20found%20to%20be%20particularly%20poor%20and%20is%20partially%20related%20to%20the%20presence%20of%20a%20Ramsauer%5Cu2013Townsend%20minimum%20in%20the%20momentum%20transfer%20cross-section%20at%20low%20electron%20energies%3A%20a%20fact%20confirmed%20by%20using%20a%20%5Cu2018fake%5Cu2019%20argon%20gas%20where%20the%20Ramsauer%5Cu2013Townsend%20minimum%20is%20artificially%20removed.%20The%20results%20are%20of%20broad%20general%20relevance%20to%20low-temperature%20plasmas%2C%20and%20can%20be%20useful%20for%20assessing%20errors%20in%20plasma%20fluid%20models.%22%2C%22date%22%3A%222021-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac0486%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac0486%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-01-04T09%3A51%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22RANZ2UEN%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222021-03-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Derzsi%2C%20A.%2C%20Schulze%2C%20J.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282021%29.%20Intrasheath%20electron%20dynamics%20in%20low%20pressure%20capacitively%20coupled%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E30%3C%5C%2Fi%3E%283%29%2C%2003LT04.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabe728%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabe728%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DRANZ2UEN%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Intrasheath%20electron%20dynamics%20in%20low%20pressure%20capacitively%20coupled%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-03-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabe728%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabe728%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-01-04T09%3A51%3A49Z%22%7D%7D%2C%7B%22key%22%3A%224TS87XV7%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-21%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Eg%26%23xFC%3Bz%2C%20E.%2C%20Chachereau%2C%20A.%2C%20Hartmann%2C%20P.%2C%20Korolov%2C%20I.%2C%20H%26%23xF6%3Bsl%2C%20A.%2C%20Bo%26%23x161%3Bnjakovi%26%23x107%3B%2C%20D.%2C%20Dujko%2C%20S.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Franck%2C%20C.%20M.%20%282021%29.%20Electron%20transport%20parameters%20in%20CO%20%3Csub%3E2%3C%5C%2Fsub%3E%26%23x202F%3B%3A%20a%20comparison%20of%20two%20experimental%20systems%20and%20measured%20data.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E54%3C%5C%2Fi%3E%283%29%2C%20035202.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fabbb07%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fabbb07%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D4TS87XV7%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20transport%20parameters%20in%20CO%20%3Csub%3E2%3C%5C%2Fsub%3E%20%3A%20a%20comparison%20of%20two%20experimental%20systems%20and%20measured%20data%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eda%22%2C%22lastName%22%3A%22Eg%5Cu00fcz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alise%22%2C%22lastName%22%3A%22Chachereau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%5Cu00e9ter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22H%5Cu00f6sl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danko%22%2C%22lastName%22%3A%22Bo%5Cu0161njakovi%5Cu0107%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sa%5Cu0161a%22%2C%22lastName%22%3A%22Dujko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20M%22%2C%22lastName%22%3A%22Franck%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-01-21%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fabbb07%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fabbb07%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T05%3A40%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22AA855HKQ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-21%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Lafleur%2C%20T.%2C%20Brinkmann%2C%20R.%20P.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282020%29.%20Observation%20of%20dominant%20Ohmic%20electron%20power%20absorption%20in%20capacitively%20coupled%20radio%20frequency%20argon%20discharges%20at%20low%20pressure.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%288%29%2C%20085014.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faba111%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faba111%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DAA855HKQ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Observation%20of%20dominant%20Ohmic%20electron%20power%20absorption%20in%20capacitively%20coupled%20radio%20frequency%20argon%20discharges%20at%20low%20pressure%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%20Peter%22%2C%22lastName%22%3A%22Brinkmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-08-21%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faba111%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faba111%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A54%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22F5HUV3AJ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pinh%5Cu00e3o%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-02%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPinh%26%23xE3%3Bo%2C%20N.%20R.%2C%20Loffhagen%2C%20D.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Hartmann%2C%20P.%2C%20Korolov%2C%20I.%2C%20Dujko%2C%20S.%2C%20Bo%26%23x161%3Bnjakovi%26%23x107%3B%2C%20D.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282020%29.%20Electron%20swarm%20parameters%20in%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E2%3C%5C%2Fsub%3E%20%2C%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E4%3C%5C%2Fsub%3E%20and%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E6%3C%5C%2Fsub%3E%26%23x202F%3B%3A%20measurements%20and%20kinetic%20calculations.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%284%29%2C%20045009.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab7841%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab7841%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DF5HUV3AJ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20swarm%20parameters%20in%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E2%3C%5C%2Fsub%3E%20%2C%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E4%3C%5C%2Fsub%3E%20and%20C%20%3Csub%3E2%3C%5C%2Fsub%3E%20H%20%3Csub%3E6%3C%5C%2Fsub%3E%20%3A%20measurements%20and%20kinetic%20calculations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N%20R%22%2C%22lastName%22%3A%22Pinh%5Cu00e3o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Loffhagen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Dujko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Bo%5Cu0161njakovi%5Cu0107%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22This%20work%20presents%20swarm%20parameters%20of%20electrons%20%28the%20bulk%20drift%20velocity%2C%20the%20bulk%20longitudinal%20component%20of%20the%20diffusion%20tensor%2C%20and%20the%20effective%20ionization%20frequency%29%20in%20C2Hn%2C%20with%20n%5Cuf0a0%3D%5Cuf0a02%2C%204%2C%20and%206%2C%20measured%20in%20a%20scanning%20drift%20tube%20apparatus%20under%20time-of-%5Cufb02ight%20conditions%20over%20a%20wide%20range%20of%20the%20reduced%20electric%20%5Cufb01eld%2C%201%20Td%5Cuf0a0%5Cu0084%5Cuf0a0E%5C%2FN%5Cuf0a0%5Cu0084%5Cuf0a01790%20Td%20%281%20Td%20%3D%2010%5Cu221221%20V%20m2%29.%20The%20effective%20steadystate%20Townsend%20ionization%20coef%5Cufb01cient%20is%20also%20derived%20from%20the%20experimental%20data.%20A%20kinetic%20simulation%20of%20the%20experimental%20drift%20cell%20allows%20estimating%20the%20uncertainties%20introduced%20in%20the%20data%20acquisition%20procedure%20and%20provides%20a%20correction%20factor%20to%20each%20of%20the%20measured%20swarm%20parameters.%20These%20parameters%20are%20compared%20to%20results%20of%20previous%20experimental%20studies%2C%20as%20well%20as%20to%20results%20of%20various%20kinetic%20swarm%20calculations%3A%20solutions%20of%20the%20electron%20Boltzmann%20equation%20under%20different%20approximations%20%28multiterm%20and%20density%20gradient%20expansions%29%20and%20Monte%20Carlo%20simulations.%20The%20experimental%20data%20are%20consistent%20with%20most%20of%20the%20swarm%20parameters%20obtained%20in%20earlier%20studies.%20In%20the%20case%20of%20C2H2%2C%20the%20swarm%20calculations%20show%20that%20the%20thermally%20excited%20vibrational%20population%20should%20not%20be%20neglected%2C%20in%20particular%2C%20in%20the%20%5Cufb01tting%20of%20cross%20sections%20to%20swarm%20results.%22%2C%22date%22%3A%222020-04-02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fab7841%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fab7841%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T05%3A40%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22PETA9DF9%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222020-02-17%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Lafleur%2C%20T.%2C%20Brinkmann%2C%20R.%20P.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282020%29.%20Electron%20power%20absorption%20in%20low%20pressure%20capacitively%20coupled%20electronegative%20oxygen%20radio%20frequency%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%282%29%2C%20025019.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab5f27%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab5f27%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DPETA9DF9%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20power%20absorption%20in%20low%20pressure%20capacitively%20coupled%20electronegative%20oxygen%20radio%20frequency%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%20Peter%22%2C%22lastName%22%3A%22Brinkmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22A%20thorough%20understanding%20of%20the%20energy%20transfer%20mechanism%20from%20the%20electric%20%5Cufb01eld%20to%20electrons%20is%20of%20utmost%20importance%20for%20optimisation%20and%20control%20of%20different%20plasma%20sources%20and%20processes.%20This%20mechanism%2C%20called%20electron%20power%20absorption%2C%20involves%20complex%20electron%20dynamics%20in%20electronegative%20capacitively%20coupled%20plasmas%20%28CCPs%29%20at%20low%20pressures%2C%20that%20are%20still%20not%20fully%20understood.%20Therefore%2C%20we%20present%20a%20spatio-temporally%20resolved%20analysis%20of%20electron%20power%20absorption%20in%20low%20pressure%20oxygen%20CCPs%20based%20on%20the%20momentum%20balance%20equation%20derived%20from%20the%20Boltzmann%20equation.%20Data%20are%20obtained%20from%201d3v%20particle-in-cell%5C%2FMonte%20Carlo%20Collision%20simulations.%20In%20contrast%20to%20conventional%20theoretical%20models%2C%20which%20predict%20%5Cu2018stochastic%5C%2F%20collisionless%20heating%5Cu2019%20to%20be%20important%20at%20low%20pressure%2C%20we%20observe%20the%20dominance%20of%20Ohmic%20power%20absorption.%20In%20addition%2C%20there%20is%20an%20attenuation%20of%20ambipolar%20power%20absorption%20at%20low%20pressures%20due%20to%20the%20strong%20electronegativity%2C%20and%20the%20presence%20of%20electropositive%20edge%20regions%20in%20the%20discharge%2C%20which%20cause%20a%20high%20degree%20of%20temporal%20symmetry%20of%20the%20electron%20temperature%20within%20the%20RF%20period.%22%2C%22date%22%3A%222020-02-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fab5f27%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fab5f27%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A54%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22YL2CXRA9%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Donk%5Cu00f3%20et%20al.%22%2C%22parsedDate%22%3A%222018-10-29%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDonk%26%23xF3%3B%2C%20Z.%2C%20Derzsi%2C%20A.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Schulze%2C%20J.%2C%20Schuengel%2C%20E.%2C%20%26amp%3B%20Hamaguchi%2C%20S.%20%282018%29.%20Ion%20energy%20and%20angular%20distributions%20in%20low-pressure%20capacitive%20oxygen%20RF%20discharges%20driven%20by%20tailored%20voltage%20waveforms.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E27%3C%5C%2Fi%3E%2810%29%2C%20104008.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faae5c3%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faae5c3%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DYL2CXRA9%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ion%20energy%20and%20angular%20distributions%20in%20low-pressure%20capacitive%20oxygen%20RF%20discharges%20driven%20by%20tailored%20voltage%20waveforms%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Edmund%22%2C%22lastName%22%3A%22Schuengel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Satoshi%22%2C%22lastName%22%3A%22Hamaguchi%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-10-29%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faae5c3%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faae5c3%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A54%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22NEPKQ2HE%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vass%20et%20al.%22%2C%22parsedDate%22%3A%222017-05-05%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Korolov%2C%20I.%2C%20Loffhagen%2C%20D.%2C%20Pinh%26%23xE3%3Bo%2C%20N.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282017%29.%20Electron%20transport%20parameters%20in%20CO%20%3Csub%3E2%3C%5C%2Fsub%3E%26%23x202F%3B%3A%20scanning%20drift%20tube%20measurements%20and%20kinetic%20computations.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%286%29%2C%20065007.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa6789%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa6789%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DNEPKQ2HE%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electron%20transport%20parameters%20in%20CO%20%3Csub%3E2%3C%5C%2Fsub%3E%20%3A%20scanning%20drift%20tube%20measurements%20and%20kinetic%20computations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Loffhagen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N%22%2C%22lastName%22%3A%22Pinh%5Cu00e3o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22This%20work%20presents%20the%20transport%20coef%5Cufb01cients%20of%20electrons%20%28bulk%20drift%20velocity%2C%20longitudinal%20diffusion%20coef%5Cufb01cient%2C%20and%20effective%20ionization%20frequency%29%20in%20CO2%20measured%20under%20time-of-%5Cufb02ight%20conditions%20over%20a%20wide%20range%20of%20the%20reduced%20electric%20%5Cufb01eld%2C%2015%20Td%20-%20E%20N%20-%202660%20Td%2C%20in%20a%20scanning%20drift%20tube%20apparatus.%20The%20data%20obtained%20in%20the%20experiments%20are%20also%20applied%20to%20determine%20the%20effective%20steady-state%20Townsend%20ionization%20coef%5Cufb01cient.%20These%20parameters%20are%20compared%20to%20the%20results%20of%20previous%20experimental%20studies%2C%20as%20well%20as%20to%20the%20results%20of%20various%20kinetic%20computations%3A%20solutions%20of%20the%20electron%20Boltzmann%20equation%20under%20different%20approximations%20%28multiterm%20and%20density%20gradient%20expansions%29%20and%20Monte%20Carlo%20simulations.%20The%20experimental%20data%20extend%20the%20range%20of%20E%5C%2FN%20compared%20with%20previous%20measurements%20and%20are%20consistent%20with%20most%20of%20the%20transport%20parameters%20obtained%20in%20these%20earlier%20studies.%20The%20computational%20results%20point%20out%20the%20range%20of%20applicability%20of%20the%20respective%20approaches%20to%20determine%20the%20different%20measured%20transport%20properties%20of%20electrons%20in%20CO2.%20They%20also%20demonstrate%20the%20need%20for%20further%20improvement%20of%20the%20electron%20collision%20cross%20section%20data%20for%20CO2%20taking%20into%20account%20the%20present%20experimental%20data.%22%2C%22date%22%3A%222017-05-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faa6789%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faa6789%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T05%3A40%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22KVU4ZXSL%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Korolov%20et%20al.%22%2C%22parsedDate%22%3A%222016-10-19%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKorolov%2C%20I.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282016%29.%20Scanning%20drift%20tube%20measurements%20of%20electron%20transport%20parameters%20in%20different%20gases%3A%20argon%2C%20synthetic%20air%2C%20methane%20and%20deuterium.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%2841%29%2C%20415203.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F0022-3727%5C%2F49%5C%2F41%5C%2F415203%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F0022-3727%5C%2F49%5C%2F41%5C%2F415203%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DKVU4ZXSL%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Scanning%20drift%20tube%20measurements%20of%20electron%20transport%20parameters%20in%20different%20gases%3A%20argon%2C%20synthetic%20air%2C%20methane%20and%20deuterium%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22Measurements%20of%20transport%20coefficients%20of%20electrons%20in%20a%20scanning%20drift%20tube%20apparatus%20are%20reported%20for%20different%20gases%3A%20argon%2C%20synthetic%20air%2C%20methane%20and%20deuterium.%20The%20experimental%20system%20allows%20the%20spatio-temporal%20development%20of%20the%20electron%20swarms%20%28%5Cu2018swarm%20maps%5Cu2019%29%20to%20be%20recorded%20and%20this%20information%2C%20when%20compared%20with%20the%20profiles%20predicted%20by%20theory%2C%20makes%20it%20possible%20to%20determine%20the%20%5Cu2018time-of-flight%5Cu2019%20transport%20coefficients%3A%20the%20bulk%20drift%20velocity%2C%20the%20longitudinal%20diffusion%20coefficient%20and%20the%20effective%20ionization%20coefficient%2C%20in%20a%20well-defined%20way.%20From%20these%20data%2C%20the%20effective%20Townsend%20ionization%20coefficient%20is%20determined%20as%20well.%20The%20swarm%20maps%20provide%2C%20additionally%2C%20direct%2C%20unambiguous%20information%20about%20the%20hydrodynamic%5C%2F%20non-hydrodynamic%20regimes%20of%20the%20swarms%2C%20aiding%20the%20selection%20of%20the%20proper%20regions%20applicable%20for%20the%20determination%20of%20the%20transport%20coefficients.%22%2C%22date%22%3A%222016-10-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F0022-3727%5C%2F49%5C%2F41%5C%2F415203%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F0022-3727%5C%2F49%5C%2F41%5C%2F415203%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T05%3A40%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22SPRUNV44%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Korolov%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKorolov%2C%20I.%2C%20%3Cstrong%3EVass%3C%5C%2Fstrong%3E%2C%20M.%2C%20Bastykova%2C%20N.%20Kh.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282016%29.%20A%20scanning%20drift%20tube%20apparatus%20for%20spatiotemporal%20mapping%20of%20electron%20swarms.%20%3Ci%3EReview%20of%20Scientific%20Instruments%3C%5C%2Fi%3E%2C%20%3Ci%3E87%3C%5C%2Fi%3E%286%29%2C%20063102.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4952747%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4952747%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DSPRUNV44%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20scanning%20drift%20tube%20apparatus%20for%20spatiotemporal%20mapping%20of%20electron%20swarms%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Vass%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20Kh.%22%2C%22lastName%22%3A%22Bastykova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2206%5C%2F2016%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4952747%22%2C%22ISSN%22%3A%220034-6748%2C%201089-7623%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Faip.scitation.org%5C%2Fdoi%5C%2F10.1063%5C%2F1.4952747%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T05%3A40%3A46Z%22%7D%7D%5D%7D
Vass, M., Schulenberg, D., Donkó, Z., Hartmann, P., Steuer, D., Böke, M., Schulz-von Der Gathen, V., Korolov, I., Mussenbrock, T., & Schulze, J. (2024). Energy efficiency of reactive species generation in radio frequency atmospheric pressure plasma jets driven by tailored voltage waveforms in a He/O2 mixture. Plasma Sources Science and Technology, 33(11), 11LT01. https://doi.org/10.1088/1361-6595/ad8ae7 Cite
Tian, C.-B., Wang, L., Vass, M., Wang, X.-K., Dong, W., Song, Y.-H., Wang, Y.-N., & Schulze, J. (2024). The detachment-induced mode in electronegative capacitively coupled radio-frequency plasmas. Plasma Sources Science and Technology, 33(7), 075008. https://doi.org/10.1088/1361-6595/ad5df8 Cite
Masheyeva, R., Vass, M., Wang, X.-K., Liu, Y.-X., Derzsi, A., Hartmann, P., Schulze, J., & Donkó, Z. (2024). Electron power absorption in CF 4 capacitively coupled RF plasmas operated in the striation mode. Plasma Sources Science and Technology, 33(4), 045019. https://doi.org/10.1088/1361-6595/ad3c69 Cite
Derzsi, A., Vass, M., Masheyeva, R., Horváth, B., Donkó, Z., & Hartmann, P. (2024). Frequency-dependent electron power absorption mode transitions in capacitively coupled argon-oxygen plasmas. Plasma Sources Science and Technology, 33(2), 025005. https://doi.org/10.1088/1361-6595/ad1fd5 Cite
Schulenberg, D. A., Vass, M., Klich, M., Donkó, Z., Klotz, J., Bibinov, N., Mussenbrock, T., & Schulze, J. (2024). Mode Transition Induced by Gas Heating Along the Discharge Channel in Capacitively Coupled Atmospheric Pressure Micro Plasma Jets. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10444-6 Cite
Vass, M., Schulenberg, D., Donkó, Z., Korolov, I., Hartmann, P., Schulze, J., & Mussenbrock, T. (2024). A new 2D fluid-MC hybrid approach for simulating nonequilibrium atmospheric pressure plasmas: density distribution of atomic oxygen in radio-frequency plasma jets in He/O 2 mixtures. Plasma Sources Science and Technology, 33(1), 015012. https://doi.org/10.1088/1361-6595/ad1f37 Cite
Dujko, S., Bošnjaković, D., Vass, M., Hartmann, P., Korolov, I., Pinhão, N. R., Loffhagen, D., & Donkó, Z. (2023). Scanning drift tube measurements and kinetic studies of electron transport in CO. Plasma Sources Science and Technology, 32(2), 025014. https://doi.org/10.1088/1361-6595/acbc96 Cite
Liu, Y., Vass, M., Hübner, G., Schulenberg, D., Hemke, T., Bischoff, L., Chur, S., Steuer, D., Golda, J., Böke, M., Schulze, J., Korolov, I., & Mussenbrock, T. (2023). Local enhancement of electron heating and neutral species generation in radio-frequency micro-atmospheric pressure plasma jets: the effects of structured electrode topologies. Plasma Sources Science and Technology, 32(2), 025012. https://doi.org/10.1088/1361-6595/acb9b8 Cite
Vass, M., Wang, L., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2022). Frequency coupling in low-pressure dual-frequency capacitively coupled plasmas revisited based on the Boltzmann term analysis. Plasma Sources Science and Technology, 31(11), 115004. https://doi.org/10.1088/1361-6595/ac9754 Cite
Wang, L., Vass, M., Lafleur, T., Donkó, Z., Song, Y.-H., & Schulze, J. (2022). On the validity of the classical plasma conductivity in capacitive RF discharges. Plasma Sources Science and Technology, 31(10), 105013. https://doi.org/10.1088/1361-6595/ac95c1 Cite
Wang, L., Vass, M., Donkó, Z., Hartmann, P., Derzsi, A., Song, Y.-H., & Schulze, J. (2022). Electropositive core in electronegative magnetized capacitive radio frequency plasmas. Plasma Sources Science and Technology, 31(6), 06LT01. https://doi.org/10.1088/1361-6595/ac5ec7 Cite
Vass, M., Palla, P., & Hartmann, P. (2022). Revisiting the numerical stability/accuracy conditions of explicit PIC/MCC simulations of low-temperature gas discharges. Plasma Sources Science and Technology, 31(6), 064001. https://doi.org/10.1088/1361-6595/ac6e85 Cite
Vass, M., Wilczek, S., Derzsi, A., Horváth, B., Hartmann, P., & Donkó, Z. (2022). Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 31(4), 045017. https://doi.org/10.1088/1361-6595/ac6361 Cite
Derzsi, A., Hartmann, P., Vass, M., Horváth, B., Gyulai, M., Korolov, I., Schulze, J., & Donko, Z. (2022). Electron power absorption in capacitively coupled neon–oxygen plasmas: a comparison of experimental and computational results. Plasma Sources Sci. Technol., 22. Cite
Vass, M., Wilczek, S., Schulze, J., & Donkó, Z. (2021). Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N 2. Plasma Sources Science and Technology, 30(10), 105010. https://doi.org/10.1088/1361-6595/ac278c Cite
Wang, L., Vass, M., Donkó, Z., Hartmann, P., Derzsi, A., Song, Y.-H., & Schulze, J. (2021). Magnetic attenuation of the self-excitation of the plasma series resonance in low-pressure capacitively coupled discharges. Plasma Sources Science and Technology, 30(10), 10LT01. https://doi.org/10.1088/1361-6595/ac287b Cite
Donko, Z., Derzsi, A., Vass, M., Horváth, B., Wilczek, S., Hartmann, B., & Hartmann, P. (2021). eduPIC: an introductory particle based code for radio-frequency plasma simulation. Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/ac0b55 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2021). Collisional electron momentum loss in low temperature plasmas: on the validity of the classical approximation. Plasma Sources Science and Technology, 30(6), 065015. https://doi.org/10.1088/1361-6595/ac0486 Cite
Vass, M., Derzsi, A., Schulze, J., & Donkó, Z. (2021). Intrasheath electron dynamics in low pressure capacitively coupled plasmas. Plasma Sources Science and Technology, 30(3), 03LT04. https://doi.org/10.1088/1361-6595/abe728 Cite
Vass, M., Egüz, E., Chachereau, A., Hartmann, P., Korolov, I., Hösl, A., Bošnjaković, D., Dujko, S., Donkó, Z., & Franck, C. M. (2021). Electron transport parameters in CO 2 : a comparison of two experimental systems and measured data. Journal of Physics D: Applied Physics, 54(3), 035202. https://doi.org/10.1088/1361-6463/abbb07 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Observation of dominant Ohmic electron power absorption in capacitively coupled radio frequency argon discharges at low pressure. Plasma Sources Science and Technology, 29(8), 085014. https://doi.org/10.1088/1361-6595/aba111 Cite
Pinhão, N. R., Loffhagen, D., Vass, M., Hartmann, P., Korolov, I., Dujko, S., Bošnjaković, D., & Donkó, Z. (2020). Electron swarm parameters in C 2 H 2 , C 2 H 4 and C 2 H 6 : measurements and kinetic calculations. Plasma Sources Science and Technology, 29(4), 045009. https://doi.org/10.1088/1361-6595/ab7841 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Electron power absorption in low pressure capacitively coupled electronegative oxygen radio frequency plasmas. Plasma Sources Science and Technology, 29(2), 025019. https://doi.org/10.1088/1361-6595/ab5f27 Cite
Donkó, Z., Derzsi, A., Vass, M., Schulze, J., Schuengel, E., & Hamaguchi, S. (2018). Ion energy and angular distributions in low-pressure capacitive oxygen RF discharges driven by tailored voltage waveforms. Plasma Sources Science and Technology, 27(10), 104008. https://doi.org/10.1088/1361-6595/aae5c3 Cite
Vass, M., Korolov, I., Loffhagen, D., Pinhão, N., & Donkó, Z. (2017). Electron transport parameters in CO 2 : scanning drift tube measurements and kinetic computations. Plasma Sources Science and Technology, 26(6), 065007. https://doi.org/10.1088/1361-6595/aa6789 Cite
Korolov, I., Vass, M., & Donkó, Z. (2016). Scanning drift tube measurements of electron transport parameters in different gases: argon, synthetic air, methane and deuterium. Journal of Physics D: Applied Physics, 49(41), 415203. https://doi.org/10.1088/0022-3727/49/41/415203 Cite
Korolov, I., Vass, M., Bastykova, N. Kh., & Donkó, Z. (2016). A scanning drift tube apparatus for spatiotemporal mapping of electron swarms. Review of Scientific Instruments, 87(6), 063102. https://doi.org/10.1063/1.4952747 Cite