Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches

Florian Krüger, Sebastian Wilczek, Julian Schulze

Plasma Sources Science and Technology, Volume 28, Number 7


The etching of sub micrometer high-aspect-ratio (HAR) features into dielectric materials in low pressure radio frequency technological plasmas is limited by the accumulation of positive surface charges inside etch trenches. These are, at least partially, caused by highly energetic positive ions that are accelerated by the sheath electric field to high velocities perpendicular to the wafer. In contrast to these anisotropic ions, thermal electrons typically reach the electrode only during the sheath collapse and cannot penetrate deeply into HAR features to compensate the positive surface charges. This problem causes significant reductions of the etch rate and leads to deformations of the features due to ion deflection, i.e. the aspect ratio is limited. Here, we demonstrate that voltage waveform tailoring can be used to generate electric field reversals adjacent to the wafer during sheath collapse to accelerate electrons towards the electrode to allow them to penetrate deeply into HAR etch features to compensate positive surface charges and to overcome this process limitation. Based on 1D3V particle-in-cell/Monte Carlo collision simulations of a capacitively coupled plasma operated in argon at 1 Pa, we study the effects of changing the shape, peak-to-peak voltage, and harmonics' frequencies of the driving voltage waveform on this electric field reversal as well as on the electron velocity and angular distribution function at the wafer. We find that the angle of incidence of electrons relative to the surface normal at the wafer can be strongly reduced and the electron velocity perpendicular to the wafer can be significantly increased by choosing the driving voltage waveform in a way that ensures a fast and short sheath collapse. This is caused by the requirement of flux compensation of electrons and ions at the electrode on time average in the presence of a short and steep sheath collapse.