Senior Researcher
Address
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Universitätsstraße 150
D-44801 Bochum, Germany
Room
ID 1/521
Phone
+49 234 32 21278
Email
schuecke(at)aept.rub.de
Publications
2825793
Schücke
apa
50
date
desc
year
1
Schücke
389
https://www.aept.ruhr-uni-bochum.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-b094626bac9602eb94a05596c3e18f28%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22UJGG2LPT%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22B%5Cu00f6ddecker%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-11%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EB%26%23xF6%3Bddecker%2C%20A.%2C%20Passmann%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Korolov%2C%20I.%2C%20Skoda%2C%20R.%2C%20Mussenbrock%2C%20T.%2C%20Gibson%2C%20A.%20R.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282023%29.%20Interactions%20Between%20Flow%20Fields%20Induced%20by%20Surface%20Dielectric%20Barrier%20Discharge%20Arrays.%20%3Ci%3EPlasma%20Chemistry%20and%20Plasma%20Processing%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10406-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10406-y%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DUJGG2LPT%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interactions%20Between%20Flow%20Fields%20Induced%20by%20Surface%20Dielectric%20Barrier%20Discharge%20Arrays%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximilian%22%2C%22lastName%22%3A%22Passmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romuald%22%2C%22lastName%22%3A%22Skoda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22This%20study%20investigates%20the%20flow%20field%20induced%20by%20a%20surface%20dielectric%20barrier%20discharge%20%28SDBD%29%20system%2C%20known%20for%20its%20efficient%20pollution%20remediation%20of%20volatile%20organic%20compounds%20%28VOCs%29.%20We%20aim%20to%20understand%20the%20flow%20dynamics%20that%20contribute%20to%20the%20high%20conversion%20observed%20in%20similar%20systems%20using%20this%20specific%20SDBD%20design.%20Examining%20how%20the%20surface%20discharge%20affects%20the%20gas%20mixing%20in%20chemical%20processes%20is%20important%20for%20both%20understanding%20the%20fundamentals%20and%20for%20potential%20industrial%20applications.%20Experimental%20techniques%2C%20including%20schlieren%20imaging%20and%20particle%20image%20velocimetry%20%28PIV%29%2C%20applied%20with%20high%20temporal%20resolution%2C%20were%20used%20to%20analyse%20the%20flow%20field.%20Complementary%2C%20fluid%20simulations%20are%20employed%20to%20investigate%20the%20coupling%20between%20streamer%20and%20gas%20dynamics.%20Results%20show%20distinct%20fluid%20field%20behaviours%20for%20different%20electrode%20configurations%2C%20which%20differ%20in%20geometric%20complexity.%20The%20fluid%20field%20analysis%20of%20the%20most%20basic%20electrode%20design%20revealed%20behaviours%20commonly%20observed%20in%20actuator%20studies.%20The%20simulation%20results%20indicate%20the%20local%20information%20about%20the%20electron%20density%20as%20well%20as%20different%20temporal%20phases%20of%20the%20fluid%20flow%20velocity%20field%20containing%20the%20development%20of%20the%20experimental%20found%20vortex%20structure%2C%20its%20direction%20and%20speed%20of%20rotation.%20The%20electrode%20design%20with%20mostly%20parallel%20grid%20line%20structures%20exhibits%20confined%20vortices%20near%20the%20surface.%20In%20contrast%2C%20an%20electrode%20design%20also%20used%20in%20previous%20studies%2C%20is%20shown%20to%20promote%20strong%20gas%20transport%20through%20extended%20vortex%20structures%2C%20enhancing%20gas%20mixing%20and%20potentially%20explaining%20the%20high%20conversion%20observed.%22%2C%22date%22%3A%222023-10-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs11090-023-10406-y%22%2C%22ISSN%22%3A%220272-4324%2C%201572-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs11090-023-10406-y%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-10-20T16%3A00%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22JQ332RWM%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ollegott%20et%20al.%22%2C%22parsedDate%22%3A%222023-06-29%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EOllegott%2C%20K.%2C%20Wirth%2C%20P.%2C%20Oberste-Beulmann%2C%20C.%2C%20Sakthi%2C%20G.%20S.%20M.%2C%20Magazova%2C%20A.%2C%20Hermanns%2C%20P.%2C%20Peters%2C%20N.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Bracht%2C%20V.%2C%20Agar%2C%20D.%20W.%2C%20Awakowicz%2C%20P.%2C%20%26amp%3B%20Muhler%2C%20M.%20%282023%29.%20Investigation%20of%20flow%20characteristics%20in%20a%20twin-surface%20dielectric%20barrier%20discharge%20reactor%20by%20Schlieren%20imaging.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E56%3C%5C%2Fi%3E%2826%29%2C%20265201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Facc956%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Facc956%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DJQ332RWM%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigation%20of%20flow%20characteristics%20in%20a%20twin-surface%20dielectric%20barrier%20discharge%20reactor%20by%20Schlieren%20imaging%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%22%2C%22lastName%22%3A%22Ollegott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Wirth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste-Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gokul%20Siddarth%20Mani%22%2C%22lastName%22%3A%22Sakthi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aliya%22%2C%22lastName%22%3A%22Magazova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Hermanns%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vera%22%2C%22lastName%22%3A%22Bracht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20W%22%2C%22lastName%22%3A%22Agar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Dielectric%20barrier%20discharges%20are%20an%20emerging%20technology%20for%20the%20plasma-catalytic%20removal%20of%20volatile%20organic%20compounds%20and%20other%20gas%20purification%20challenges%20such%20as%20the%20removal%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20traces%20from%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Packed-bed%20reactors%20are%20mainly%20used%20for%20these%20applications%2C%20but%20surface%20dielectric%20barrier%20discharges%20%28SDBDs%29%20typically%20printed%20on%20thin%20dielectric%20plates%20are%20promising%20alternatives%20for%20the%20treatment%20of%20large%20volumetric%20flow%20rates%20due%20to%20their%20low%20flow%20resistance%20causing%20a%20low%20pressure%20drop.%20Especially%20for%20SDBDs%20the%20flow%20conditions%20are%20crucial%2C%20because%20the%20active%20plasma%20filled%20volume%20covering%20the%20mentioned%20plates%20with%20a%20typical%20thickness%20of%200.1%20mm%20is%20small%20in%20comparison%20to%20the%20overall%20reactor%20volume%20with%20a%20typical%20distance%20of%20some%20tens%20of%20millimeters%20to%20the%20reactor%20wall.%20In%20this%20study%2C%20the%20flow%20conditions%20of%20a%20twin-SDBD%20were%20investigated%20by%20Schlieren%20imaging%20applied%20in%20converting%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20traces%20in%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20containing%20gas%20mixtures%20to%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20and%20compared%20to%20fluid%20dynamics%20simulations.%20Schlieren%20imaging%20was%20used%20to%20visualize%20local%20gradients%20of%20the%20refractive%20index%20inside%20the%20SDBD%20reaction%20chamber%2C%20while%20gas%20composition%2C%20dissipated%20power%2C%20or%20flow%20rate%20were%20varied.%20Without%20a%20plasma%20discharge%2C%20laminar%20flow%20dominates%2C%20resulting%20in%20a%20conversion%20below%2010%25%20over%20a%20Pt-coated%20electrode%20configuration%20in%20the%20reaction%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20traces%20with%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20With%20the%20plasma%20discharge%2C%20full%20conversion%20was%20achieved%20for%20the%20same%20reaction%20without%20catalyst%2C%20although%20the%20plasma%20is%20also%20confined%20to%20the%20surface%20of%20the%20electrode%20configuration.%20Schlieren%20structures%20covering%20the%20complete%20cross%20section%20of%20the%20reaction%20chamber%20were%20observed%2C%20showing%20that%20strong%20radial%20mass%20transport%20is%20induced%20by%20the%20plasma.%20The%20shape%20and%20extent%20of%20the%20Schlieren%20structures%20is%20ascribed%20to%20a%20superimposition%20of%20gas%20flow%2C%20thermal%20expansion%20from%20the%20plasma%20volume%2C%20thermal%20buoyancy%20as%20well%20as%20an%20electrohydrodynamic%20force%20between%20the%20electrodes%20and%20the%20grounded%20reactor%20walls.%20Fluid%20dynamics%20simulations%20show%20vortex%20formation%20above%20and%20below%20the%20electrode%2C%20created%20by%20the%20electrohydrodynamic%20force%20further%20implying%20extensive%20mass%20transport%20by%20the%20plasma%2C%20which%20is%20visualized%20in%20addition%20by%20carbonaceous%20deposits%20on%20the%20reactor%20lid.%20This%20emerging%20deposition%20pattern%20during%20toluene%20decomposition%20closely%20corresponds%20to%20the%20electrode%20geometry.%20It%20is%20proposed%20that%20the%20reaction%20proceeds%20only%20in%20the%20active%20plasma%20volume%20and%20that%20reactive%20species%20transported%20to%20the%20bulk%20gas%20phase%20only%20have%20a%20minor%20contribution.%20Thus%2C%20the%20degree%20of%20conversion%20of%20the%20SDBD%20reactor%20is%20not%20only%20determined%20by%20the%20chemical%20reactivity%20in%20the%20plasma%20volume%2C%20but%20also%20by%20its%20plasma-induced%20mass%20transport%20resulting%20in%20efficient%20gas%20mixing.%20These%20findings%20reveal%20new%20possibilities%20to%20improve%20SDBD%20reactors%20for%20gas%20purification%20applications%20based%20on%20their%20favorable%20flow%20conditions.%22%2C%22date%22%3A%222023-06-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Facc956%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Facc956%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-05-31T09%3A53%3A20Z%22%7D%7D%2C%7B%22key%22%3A%2237879F8I%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fccke%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bcke%2C%20L.%2C%20Bodnar%2C%20A.%2C%20Friedrichs%2C%20N.%2C%20B%26%23xF6%3Bddecker%2C%20A.%2C%20Peters%2C%20N.%2C%20Ollegott%2C%20K.%2C%20Oberste-Beulmann%2C%20C.%2C%20Wirth%2C%20P.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Korolov%2C%20I.%2C%20Gibson%2C%20A.%20R.%2C%20Muhler%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282022%29.%20Optical%20absorption%20spectroscopy%20of%20reactive%20oxygen%20and%20nitrogen%20species%20in%20a%20surface%20dielectric%20barrier%20discharge.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E55%3C%5C%2Fi%3E%2821%29%2C%20215205.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D37879F8I%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20absorption%20spectroscopy%20of%20reactive%20oxygen%20and%20nitrogen%20species%20in%20a%20surface%20dielectric%20barrier%20discharge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arisa%22%2C%22lastName%22%3A%22Bodnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Friedrichs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%22%2C%22lastName%22%3A%22Ollegott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste-Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Wirth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20twin%20surface%20dielectric%20barrier%20discharge%20%28SDBD%29%20ignited%20in%20a%20dry%20synthetic%20air%20gas%20stream%20is%20studied%20regarding%20the%20formation%20of%20reactive%20oxygen%20and%20nitrogen%20species%20%28RONS%29%20and%20their%20impact%20on%20the%20conversion%20of%20admixed%20n-butane.%20The%20discharge%20is%20driven%20by%20a%20damped%20sinusoidal%20voltage%20waveform%20at%20peak-to-peak%20amplitudes%20of%208%20kVpp%5Cu201313%20kVpp%20and%20pulse%20repetition%20frequencies%20of%20250%20Hz%5Cu20134000%20Hz.%20Absolute%20densities%20of%20O3%2C%20NO2%2C%20NO3%2C%20as%20well%20as%20estimates%20of%20the%20sum%20of%20the%20densities%20of%20N2O4%20and%20N2O5%20are%20determined%20temporally%20resolved%20by%20means%20of%20optical%20absorption%20spectroscopy%20using%20a%20laser%20driven%20broadband%20light%20source%2C%20suitable%20interference%20filters%2C%20and%20a%20photodiode%20detector.%20The%20measured%20densities%20are%20acquired%20across%20the%20center%20of%20the%20reactor%20chamber%20as%20well%20as%20at%20the%20outlet%20of%20the%20chamber.%20The%20temporal%20and%20spatial%20evolution%20of%20the%20species%5Cu2019%20densities%20is%20correlated%20to%20the%20conversion%20of%20n-butane%20at%20concentrations%20of%2050%20ppm%20and%20400%20ppm%2C%20measured%20by%20means%20of%20flame%20ionization%20detectors.%20The%20n-butane%20is%20admixed%20either%20before%20or%20after%20the%20reactor%20chamber%2C%20in%20order%20to%20separate%20the%20impact%20of%20short-%20and%20long-lived%20reactive%20species%20on%20the%20conversion%20process.%20It%20is%20found%20that%2C%20despite%20the%20stationary%20conversion%20at%20the%20selected%20operating%20points%2C%20at%20higher%20voltages%20and%20repetition%20frequencies%20the%20densities%20of%20the%20measured%20species%20are%20not%20in%20steady%20state.%20Based%20on%20the%20produced%20results%20it%20is%20presumed%20that%20the%20presence%20of%20n-butane%20modifies%20the%20formation%20and%20consumption%20pathways%20of%20O3.%20At%20the%20same%20time%2C%20there%20is%20no%20significant%20impact%20on%20the%20formation%20of%20dinitrogen%20oxides%20%28N2O4%20and%20N2O5%29.%20Furthermore%2C%20a%20comparatively%20high%20conversion%20of%20n-butane%2C%20when%20admixed%20at%20the%20outlet%20of%20the%20reactor%20chamber%20is%20observed.%20These%20findings%20are%20discussed%20together%20with%20known%20rate%20coefficients%20for%20the%20reactions%20of%20n-butane%20with%20selected%20RONS.%22%2C%22date%22%3A%222022-05-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fac5661%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-03-01T13%3A26%3A07Z%22%7D%7D%2C%7B%22key%22%3A%222U8SFKT5%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nguyen-Smith%20et%20al.%22%2C%22parsedDate%22%3A%222022-03-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENguyen-Smith%2C%20R.%20T.%2C%20B%26%23xF6%3Bddecker%2C%20A.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Bibinov%2C%20N.%2C%20Korolov%2C%20I.%2C%20Zhang%2C%20Q.-Z.%2C%20Mussenbrock%2C%20T.%2C%20Awakowicz%2C%20P.%2C%20%26amp%3B%20Schulze%2C%20J.%20%282022%29.%20%26%23x3BC%3Bs%20and%20ns%20twin%20surface%20dielectric%20barrier%20discharges%20operated%20in%20air%3A%20from%20electrode%20erosion%20to%20plasma%20characteristics.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%283%29%2C%20035008.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5452%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5452%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D2U8SFKT5%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22%5Cu03bcs%20and%20ns%20twin%20surface%20dielectric%20barrier%20discharges%20operated%20in%20air%3A%20from%20electrode%20erosion%20to%20plasma%20characteristics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q-Z%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Schulze%22%7D%5D%2C%22abstractNote%22%3A%22Electrode%20erosion%20through%20continual%20long-timescale%20operation%20%2860%20min%29%20of%20identical%20twin%20surface%20dielectric%20barrier%20discharges%20%28twin%20SDBDs%29%20powered%20either%20by%20a%20microsecond%20%28%5Cu03bcs%29%20or%20a%20nanosecond%20timescale%20%28ns%29%20voltage%20source%20is%20investigated.%20The%20twin%20SDBDs%20are%20characterized%20using%20current%5Cu2013voltage%20measurements%2C%20optical%20emission%20spectroscopy%2C%20and%20phase%20integrated%20ICCD%20imaging.%20The%20temporally%20and%20spatially%20averaged%20gas%20temperature%2C%20consumed%20electric%20power%2C%20and%20effective%20discharge%20parameters%20%28reduced%20electric%20field%2C%20and%20electron%20density%29%20are%20measured.%20The%20%5Cu03bcs%20twin%20SDBD%20is%20shown%20to%20operate%20in%20a%20filamentary%20mode%20while%20the%20ns%20twin%20SDBD%20is%20shown%20to%20operate%20in%20a%20more%20homogeneous%20mode%20%28i.e.%20non%20filamentary%29.%20Despite%20a%20similarity%20of%20the%20effective%20discharge%20parameters%20in%20both%20the%20%5Cu03bcs%20and%20ns%20twin%20SDBD%2C%20erosion%20of%20the%20nickel%20coated%20electrodes%20caused%20by%20operation%20of%20the%20twin%20SDBD%20differs%20strongly.%20Only%20the%20formation%20of%20a%20moderate%20number%20of%20nickel%20oxide%20species%20is%20observed%20on%20the%20surface%20of%20the%20ns%20twin%20SDBD%20electrodes.%20In%20contrast%2C%20the%20nickel%20coated%20electrodes%20are%20locally%20melted%20and%20considerably%20higher%20densities%20of%20oxides%20are%20observed%20around%20the%20eroded%20areas%20of%20the%20%5Cu03bcs%20twin%20SDBD%2C%20due%20to%20the%20filamentary%20nature%20of%20the%20discharge.%22%2C%22date%22%3A%222022-03-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac5452%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac5452%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-04-23T13%3A05%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22STDG2YRK%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22B%5Cu00f6ddecker%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EB%26%23xF6%3Bddecker%2C%20A.%2C%20Bodnar%2C%20A.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Giesekus%2C%20J.%2C%20Wenselau%2C%20K.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Oppotsch%2C%20T.%2C%20Oberste-Beulmann%2C%20C.%2C%20Muhler%2C%20M.%2C%20Gibson%2C%20A.%20R.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282022%29.%20A%20scalable%20twin%20surface%20dielectric%20barrier%20discharge%20system%20for%20pollution%20remediation%20at%20high%20gas%20flow%20rates.%20%3Ci%3EReaction%20Chemistry%20%26amp%3B%20Engineering%3C%5C%2Fi%3E%2C%2010.1039.D2RE00167E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2RE00167E%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2RE00167E%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DSTDG2YRK%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20scalable%20twin%20surface%20dielectric%20barrier%20discharge%20system%20for%20pollution%20remediation%20at%20high%20gas%20flow%20rates%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arisa%22%2C%22lastName%22%3A%22Bodnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Giesekus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katja%22%2C%22lastName%22%3A%22Wenselau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T.%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%22%2C%22lastName%22%3A%22Oppotsch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste-Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22Investigation%20of%20conversion%20of%20volatile%20organic%20compounds%20by%20a%20scaled-up%20surface%20dielectric%20barrier%20discharge%20reactor%20designed%20for%20industrial%20applications.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%2C%20a%20modular%2C%20multi-electrode%20surface%20dielectric%20barrier%20discharge%20system%20for%20the%20decomposition%20of%20polluted%20air%20streams%20at%20high%20volumetric%20flows%2C%20necessary%20for%20industrial%20applications%2C%20is%20designed%20and%20constructed.%20The%20system%20is%20demonstrated%20for%20the%20decomposition%20of%20butoxyethanol%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20in%20ambient%20air%20flows%20of%20up%20to%20almost%20500%20slm%20%28standard%20litres%20per%20minute%29%20%28%5Cu2259%2030%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20h%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20at%20concentrations%20between%2050%20ppm%20and%201000%20ppm.%20With%20an%20energy%20density%20of%20%2878.3%20%5Cu00b1%203.6%29%20J%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%20maximum%20relative%20conversion%20of%20about%2027%25%20of%20butoxyethanol%20is%20achieved.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-Butane%20was%20used%20to%20enable%20comparison%20with%20previous%20studies.%20Here%20it%20could%20be%20demonstrated%20that%20the%20scaled-up%20source%20achieved%20higher%20conversion%20at%20lower%20energy%20densities%20in%20comparison%20to%20the%20original%20design%20used%20at%20lower%20volumetric%20flow%20rates.%20Additionally%2C%20the%20density%20of%20ozone%2C%20which%20is%20a%20toxic%20by-product%20of%20the%20overall%20process%2C%20was%20measured%20in%20the%20exhaust%20gas%20under%20different%20operating%20conditions%20and%20its%20degradation%20with%20activated%20carbon%20filters%20was%20studied.%20At%20an%20energy%20density%20of%2079.6%20J%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%20maximum%20ozone%20molecule%20flow%20of%20%289.02%20%5Cu00b1%200.19%29%20%5Cu00d7%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2018%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20measured%20which%20decreases%20with%20increasing%20energy%20density%2C%20because%20among%20other%20possible%20effects%20the%20rising%20temperature%20accelerates%20its%20decay.%20One%20of%20the%20activated%20carbon%20filters%20was%20able%20to%20reduce%20the%20concentration%20of%20toxic%20ozone%20by%20100%25%20under%20conditions%20where%20a%20preheated%20airstream%20is%20used.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD2RE00167E%22%2C%22ISSN%22%3A%222058-9883%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD2RE00167E%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-08-05T15%3A25%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22FG2DZNBJ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Peters%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPeters%2C%20N.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Ollegott%2C%20K.%2C%20Oberste%26%23x2010%3BBeulmann%2C%20C.%2C%20Awakowicz%2C%20P.%2C%20%26amp%3B%20Muhler%2C%20M.%20%282021%29.%20Catalyst%26%23x2010%3Benhanced%20plasma%20oxidation%20of%20%3Ci%3En%3C%5C%2Fi%3E%20%26%23x2010%3Bbutane%20over%20%26%23x3B1%3B%26%23x2010%3BMnO%20%3Csub%3E2%3C%5C%2Fsub%3E%20in%20a%20temperature%26%23x2010%3Bcontrolled%20twin%20surface%20dielectric%20barrier%20discharge%20reactor.%20%3Ci%3EPlasma%20Processes%20and%20Polymers%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%284%29%2C%202000127.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.202000127%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.202000127%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DFG2DZNBJ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Catalyst%5Cu2010enhanced%20plasma%20oxidation%20of%20%3Ci%3En%3C%5C%2Fi%3E%20%5Cu2010butane%20over%20%5Cu03b1%5Cu2010MnO%20%3Csub%3E2%3C%5C%2Fsub%3E%20in%20a%20temperature%5Cu2010controlled%20twin%20surface%20dielectric%20barrier%20discharge%20reactor%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%22%2C%22lastName%22%3A%22Ollegott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste%5Cu2010Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%5D%2C%22abstractNote%22%3A%22A%20twin%20surface%20dielectric%20barrier%20discharge%20is%20used%20for%20the%20catalyst%5Cu2010enhanced%20plasma%20oxidation%20of%20300%20ppm%20n%5Cu2010butane%20in%20synthetic%20air.%20Plasma%5Cu2010only%20operation%20results%20in%20the%20conversion%20of%20n%5Cu2010butane%20into%20CO%20and%20CO2.%20Conversion%20is%20improved%20by%20increasing%20the%20temperature%20of%20the%20feed%20gas%2C%20but%20selectivity%20shifts%20to%20undesired%20CO.%20%5Cu03b1%5Cu2010MnO2%20is%20used%20as%20a%20catalyst%20deposited%20on%20the%20electrodes%20by%20spray%20coating%20with%20a%20distance%20of%201.5%20mm%20between%20the%20uncoated%20grid%20lines%20and%20the%20square%20catalyst%20patches%20to%20prevent%20the%20inhibition%20of%20plasma%20ignition.%20The%20catalyst%20strongly%20influences%20selectivity%2C%20reaching%2040%25%20conversion%20and%2073%25%20selectivity%20to%20CO2%20at%20a%20specific%20energy%20density%20of%20390%20J%5Cu00b7L%5Cu22121%20and%20140%5Cu00b0C%2C%20which%20is%20far%20below%20the%20onset%20temperature%20of%20thermocatalytic%20n%5Cu2010butane%20conversion.%22%2C%22date%22%3A%2204%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fppap.202000127%22%2C%22ISSN%22%3A%221612-8850%2C%201612-8869%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fppap.202000127%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A24%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22PV8GXKCG%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fccke%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bcke%2C%20L.%2C%20Gembus%2C%20J.-L.%2C%20Peters%2C%20N.%2C%20Kogelheide%2C%20F.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Gibson%2C%20A.%20R.%2C%20Schulze%2C%20J.%2C%20Muhler%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282020%29.%20Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2811%29%2C%20114003.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DPV8GXKCG%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan-Luca%22%2C%22lastName%22%3A%22Gembus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Friederike%22%2C%22lastName%22%3A%22Kogelheide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20voltage%20and%20power%20controlled%20surface%20dielectric%20barrier%20discharge%20for%20the%20removal%20of%20volatile%20organic%20compounds%20%28VOCs%29%20from%20gas%20streams%20is%20studied%20by%20means%20of%20current%5Cu2013voltage%20measurements%2C%20flame%20ionization%20detectors%2C%20and%20gas%20chromatography%5Cu2013mass%20spectrometry%20%28GC%5Cu2013MS%29.%20The%20discharge%20is%20generated%20in%20a%20defined%20synthetic%20air%20gas%20stream%20at%20atmospheric%20pressure%20by%20application%20of%20a%20damped%20sinusoidal%20voltage%20waveform%20resulting%20from%20a%20resonant%20circuit.%20Multiple%20organic%20compounds%2C%20namely%20n-butane%2C%20butanol%2C%20isobutanol%2C%20ethyl%20acetate%2C%20diethyl%20ether%2C%20and%20butoxyethanol%2C%20are%20tested%20at%20concentrations%20of%2050%2C%20100%2C%20200%2C%20and%20400%20ppm%20%28parts%20per%20million%29%2C%20as%20well%20as%20peak-to-peak%20voltages%20of%208%20to%2013%20kVpp%20and%20pulse%20repetition%20frequencies%20of%20250%20to%204000%20Hz.%20The%20dissipated%20power%20within%20the%20system%20is%20calculated%20utilizing%20the%20measured%20voltage%20and%20current%20waveforms.%20The%20conversion%20and%20absolute%20degradation%20of%20the%20VOCs%20are%20determined%20by%20flame%20ionization%20detectors.%20An%20increasing%20concentration%20of%20VOCs%20is%20found%20to%20increase%20the%20dissipated%20power%20marginally%2C%20suggesting%20a%20higher%20conductivity%20and%20higher%20electron%20densities%20in%20the%20plasma.%20Of%20the%20applied%20VOCs%2C%20n-butane%20is%20found%20to%20be%20the%20most%20resistant%20to%20the%20plasma%20treatment%2C%20while%20higher%20concentrations%20consistently%20result%20in%20a%20lower%20conversion%20and%20a%20higher%20absolute%20degradation%20across%20all%20tested%20compounds.%20Corresponding%20amounts%20of%20converted%20molecules%20per%20expended%20joule%20are%20given%20as%20a%20comparable%20parameter%20by%20weighting%20the%20absolute%20degradation%20with%20the%20dissipated%20power.%20Finally%2C%20specific%20reaction%20products%20are%20determined%20by%20online%20GC%5Cu2013MS%2C%20further%20confirming%20carbon%20dioxide%20%28CO2%29%20as%20a%20major%20reaction%20product%2C%20alongside%20a%20variety%20of%20less%20prevalent%20side%20products%2C%20depending%20on%20the%20structure%20of%20the%20original%20compound.%20The%20findings%20of%20this%20study%20are%20intended%20to%20promote%20the%20development%20of%20energy%20efficient%20processes%20for%20the%20purification%20of%20gas%20streams%20in%20both%2C%20industry%20and%20consumer%20market.%20Potential%20applications%20of%20the%20presented%20technique%20could%20be%20found%20in%20car%20paint%20shops%2C%20chemical%20plants%2C%20hospital%20ventilation%20systems%2C%20or%20air%20purifiers%20for%20living%20space.%22%2C%22date%22%3A%222020-11-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A25%3A13Z%22%7D%7D%2C%7B%22key%22%3A%227WTZW4RX%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kogelheide%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKogelheide%2C%20F.%2C%20Offerhaus%2C%20B.%2C%20Bibinov%2C%20N.%2C%20Krajinski%2C%20P.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Schulze%2C%20J.%2C%20Stapelmann%2C%20K.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282020%29.%20Characterisation%20of%20volume%20and%20surface%20dielectric%20barrier%20discharges%20in%20N%20%3Csub%3E2%3C%5C%2Fsub%3E%20%26%23x2013%3BO%20%3Csub%3E2%3C%5C%2Fsub%3E%20mixtures%20using%20optical%20emission%20spectroscopy.%20%3Ci%3EPlasma%20Processes%20and%20Polymers%3C%5C%2Fi%3E%2C%20%3Ci%3E17%3C%5C%2Fi%3E%286%29%2C%201900126.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201900126%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201900126%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D7WTZW4RX%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterisation%20of%20volume%20and%20surface%20dielectric%20barrier%20discharges%20in%20N%20%3Csub%3E2%3C%5C%2Fsub%3E%20%5Cu2013O%20%3Csub%3E2%3C%5C%2Fsub%3E%20mixtures%20using%20optical%20emission%20spectroscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Friederike%22%2C%22lastName%22%3A%22Kogelheide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bj%5Cu00f6rn%22%2C%22lastName%22%3A%22Offerhaus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philip%22%2C%22lastName%22%3A%22Krajinski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katharina%22%2C%22lastName%22%3A%22Stapelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20volume%20and%20a%20twin%20surface%20dielectric%20barrier%20discharge%20%28VDBD%20and%20SDBD%29%20are%20generated%20in%20different%20nitrogen%5Cu2013oxygen%20mixtures%20at%20atmospheric%20pressure%20by%20applying%20damped%20sinusoidal%20voltage%20waveforms%20with%20oscillation%20periods%20in%20the%20microsecond%20time%20scale.%20Both%20electrode%20configurations%20are%20located%20inside%20vacuum%20vessels%20and%20operated%20in%20a%20controlled%20atmosphere%20to%20exclude%20the%20influence%20of%20surrounding%20air.%20The%20discharges%20are%20characterised%20with%20different%20spatial%20and%20temporal%20resolution%20by%20applying%20absolutely%20calibrated%20optical%20emission%20spectroscopy%20in%20conjunction%20with%20numerical%20simulations%20and%20current%5Cu2013voltage%20measurements.%20Plasma%20parameters%2C%20namely%20the%20electron%20density%20and%20the%20reduced%20electric%20field%2C%20and%20the%20dissipated%20power%20are%20found%20to%20depend%20strongly%20on%20the%20oxygen%20content%20in%20the%20working%20gas%20mixture.%20Different%20spatial%20and%20temporal%20distributions%20of%20plasma%20parameters%20and%20dissipated%20power%20are%20explained%20by%20surface%20and%20residual%20volume%20charges%20for%20different%20O2%20admixtures%20due%20to%20their%20effects%20on%20the%20electron%20recombination%20rate.%20Thus%2C%20the%20oxygen%20admixture%20is%20found%20to%20strongly%20influence%20the%20breakdown%20process%20and%20plasma%20conditions%20of%20a%20VDBD%20and%20a%20SDBD.%22%2C%22date%22%3A%2206%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fppap.201900126%22%2C%22ISSN%22%3A%221612-8850%2C%201612-8869%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fppap.201900126%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A24%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22X3KK8LDD%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mitschker%20et%20al.%22%2C%22parsedDate%22%3A%222018-06-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMitschker%2C%20F.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Hoppe%2C%20C.%2C%20Jaritz%2C%20M.%2C%20Dahlmann%2C%20R.%2C%20de%20los%20Arcos%2C%20T.%2C%20Hopmann%2C%20C.%2C%20Grundmeier%2C%20G.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282018%29.%20Comparative%20study%20on%20the%20deposition%20of%20silicon%20oxide%20permeation%20barrier%20coatings%20for%20polymers%20using%20hexamethyldisilazane%20%28HMDSN%29%20and%20hexamethyldisiloxane%20%28HMDSO%29.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2823%29%2C%20235201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faac0ab%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faac0ab%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DX3KK8LDD%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Comparative%20study%20on%20the%20deposition%20of%20silicon%20oxide%20permeation%20barrier%20coatings%20for%20polymers%20using%20hexamethyldisilazane%20%28HMDSN%29%20and%20hexamethyldisiloxane%20%28HMDSO%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%22%2C%22lastName%22%3A%22Mitschker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ch%22%2C%22lastName%22%3A%22Hoppe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Jaritz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%22%2C%22lastName%22%3A%22Dahlmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22de%20los%20Arcos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ch%22%2C%22lastName%22%3A%22Hopmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Grundmeier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22The%20effect%20of%20the%20selection%20of%20hexamethyldisiloxane%20%28HMDSO%29%20and%20hexamethyldisilazane%20%28HMDSN%29%20as%20a%20precursor%20in%20a%20microwave%20driven%20low%20pressure%20plasma%20on%20the%20deposition%20of%20silicon%20oxide%20barrier%20coatings%20and%20silicon%20based%20organic%20interlayers%20on%20polyethylene%20terephthalate%20%28PET%29%20and%20polypropylene%20%28PP%29%20substrates%20is%20investigated.%20Mass%20spectrometry%20is%20used%20to%20quantify%20the%20absolute%20gas%20density%20and%20the%20degree%20of%20depletion%20of%20neutral%20precursor%20molecules%20under%20variation%20of%20oxygen%20admixture.%20On%20average%2C%20HMDSN%20shows%20a%20smaller%20density%2C%20a%20higher%20depletion%20and%20the%20production%20of%20smaller%20fragments.%20Subsequently%2C%20this%20is%20correlated%20with%20barrier%20performance%20and%20chemical%20structure%20as%20a%20function%20of%20barrier%20layer%20thickness%20and%20oxygen%20admixture%20on%20PET.%20For%20this%20purpose%2C%20the%20oxygen%20transmission%20rate%20%28OTR%29%20is%20measured%20and%20Fourier%20transformed%20infrared%20%28FTIR%29%20spectroscopy%20as%20well%20as%20x-ray%20photoelectron%20spectroscopy%20%28XPS%29%20is%20performed.%20HMDSN%20based%20coatings%20exhibit%20significantly%20higher%20barrier%20performances%20for%20high%20admixtures%20of%20oxygen%20%28200%5Cu2009sccm%29.%20In%20comparison%20to%20HMDSO%20based%20processes%2C%20however%2C%20a%20higher%20supply%20of%20oxygen%20is%20necessary%20to%20achieve%20a%20sufficient%20degree%20of%20oxidation%2C%20cross-linking%20and%2C%20therefore%2C%20barrier%20performance.%20FTIR%20and%20XPS%20reveal%20a%20distinct%20carbon%20content%20for%20low%20oxygen%20admixtures%20%2810%20and%2020%5Cu2009sccm%29%20in%20case%20of%20HMDSN%20based%20coatings.%20The%20variation%20of%20interlayer%20thickness%20also%20reveals%20significantly%20higher%20OTR%20for%20HMDSO%20based%20coatings%20on%20PET%20and%20PP.%20Barrier%20performance%20of%20HMDSO%20based%20coatings%20improves%20with%20increasing%20interlayer%20thickness%20up%20to%2010%5Cu2009nm%20for%20PET%20and%20PP.%20HMDSN%20based%20coatings%20exhibit%20a%20minimum%20of%20OTR%20without%20interlayer%20on%20PP%20and%20for%202%5Cu2009nm%20interlayer%20thickness%20on%20PET.%20Furthermore%2C%20HMDSN%20based%20coatings%20show%20distinctly%20higher%20bond%20strengths%20to%20the%20PP%20substrate.%22%2C%22date%22%3A%222018-06-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Faac0ab%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Faac0ab%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A22%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22D4DZEGW4%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mitschker%20et%20al.%22%2C%22parsedDate%22%3A%222017-06-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMitschker%2C%20F.%2C%20Steves%2C%20S.%2C%20Gebhard%2C%20M.%2C%20Rudolph%2C%20M.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Kirchheim%2C%20D.%2C%20Jaritz%2C%20M.%2C%20Brochhagen%2C%20M.%2C%20Hoppe%2C%20C.%2C%20Dahlmann%2C%20R.%2C%20B%26%23xF6%3Bke%2C%20M.%2C%20Benedikt%2C%20J.%2C%20Giner%2C%20I.%2C%20de%20los%20Arcos%2C%20T.%2C%20Hopmann%2C%20C.%2C%20Grundmeier%2C%20G.%2C%20Devi%2C%20A.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282017%29.%20Influence%20of%20PE-CVD%20and%20PE-ALD%20on%20defect%20formation%20in%20permeation%20barrier%20films%20on%20PET%20and%20correlation%20to%20atomic%20oxygen%20fluence.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%2823%29%2C%20235201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faa6e28%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faa6e28%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DD4DZEGW4%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Influence%20of%20PE-CVD%20and%20PE-ALD%20on%20defect%20formation%20in%20permeation%20barrier%20films%20on%20PET%20and%20correlation%20to%20atomic%20oxygen%20fluence%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%22%2C%22lastName%22%3A%22Mitschker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Steves%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Gebhard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Rudolph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Kirchheim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Jaritz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Brochhagen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ch%22%2C%22lastName%22%3A%22Hoppe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%22%2C%22lastName%22%3A%22Dahlmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22B%5Cu00f6ke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Benedikt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Giner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22de%20los%20Arcos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ch%22%2C%22lastName%22%3A%22Hopmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Grundmeier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Devi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22Defects%20in%20SiOx%2C%20TiO2%20and%20a-Si%3AH%20inorganic%20barrier%20films%20on%20PET%20are%20investigated.%20Visualization%20is%20achieved%20by%20reactive%20oxygen%20etching%20in%20capacitively%20coupled%20plasma%20that%20leads%20to%20the%20undercutting%20of%20the%20barrier%20films%20at%20defect%20sites%2C%20and%20defect%20densities%20are%20deduced%20by%20SEM%20imaging.%20Defect%20formation%20is%20analyzed%20as%20a%20function%20of%20absolutely%20quantified%20steady%20state%20atomic%20oxygen%20fluence%20during%20the%20deposition%20of%20silicon%20oxide%20films%20and%20the%20effect%20of%20an%20additional%20substrate%20bias%20is%20presented.%20Macro-defect%20densities%20as%20a%20function%20of%20film%20thickness%20are%20tracked.%20Barrier%20films%20with%20a%20barrier%20improvement%20of%20one%20order%20of%20magnitude%20exhibit%20macrodefect%20densities%20below%20160%20defects%20mm%5Cu22122.%22%2C%22date%22%3A%222017-06-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Faa6e28%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Faa6e28%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A22%3A46Z%22%7D%7D%5D%7D
Böddecker, A., Passmann, M., Wilczek, S., Schücke, L., Korolov, I., Skoda, R., Mussenbrock, T., Gibson, A. R., & Awakowicz, P. (2023). Interactions Between Flow Fields Induced by Surface Dielectric Barrier Discharge Arrays. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10406-y Cite
Ollegott, K., Wirth, P., Oberste-Beulmann, C., Sakthi, G. S. M., Magazova, A., Hermanns, P., Peters, N., Schücke, L., Bracht, V., Agar, D. W., Awakowicz, P., & Muhler, M. (2023). Investigation of flow characteristics in a twin-surface dielectric barrier discharge reactor by Schlieren imaging. Journal of Physics D: Applied Physics, 56(26), 265201. https://doi.org/10.1088/1361-6463/acc956 Cite
Schücke, L., Bodnar, A., Friedrichs, N., Böddecker, A., Peters, N., Ollegott, K., Oberste-Beulmann, C., Wirth, P., Nguyen-Smith, R. T., Korolov, I., Gibson, A. R., Muhler, M., & Awakowicz, P. (2022). Optical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 55(21), 215205. https://doi.org/10.1088/1361-6463/ac5661 Cite
Nguyen-Smith, R. T., Böddecker, A., Schücke, L., Bibinov, N., Korolov, I., Zhang, Q.-Z., Mussenbrock, T., Awakowicz, P., & Schulze, J. (2022). μs and ns twin surface dielectric barrier discharges operated in air: from electrode erosion to plasma characteristics. Plasma Sources Science and Technology, 31(3), 035008. https://doi.org/10.1088/1361-6595/ac5452 Cite
Böddecker, A., Bodnar, A., Schücke, L., Giesekus, J., Wenselau, K., Nguyen-Smith, R. T., Oppotsch, T., Oberste-Beulmann, C., Muhler, M., Gibson, A. R., & Awakowicz, P. (2022). A scalable twin surface dielectric barrier discharge system for pollution remediation at high gas flow rates. Reaction Chemistry & Engineering, 10.1039.D2RE00167E. https://doi.org/10.1039/D2RE00167E Cite
Peters, N., Schücke, L., Ollegott, K., Oberste‐Beulmann, C., Awakowicz, P., & Muhler, M. (2021). Catalyst‐enhanced plasma oxidation of n ‐butane over α‐MnO 2 in a temperature‐controlled twin surface dielectric barrier discharge reactor. Plasma Processes and Polymers, 18(4), 2000127. https://doi.org/10.1002/ppap.202000127 Cite
Schücke, L., Gembus, J.-L., Peters, N., Kogelheide, F., Nguyen-Smith, R. T., Gibson, A. R., Schulze, J., Muhler, M., & Awakowicz, P. (2020). Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 29(11), 114003. https://doi.org/10.1088/1361-6595/abae0b Cite
Kogelheide, F., Offerhaus, B., Bibinov, N., Krajinski, P., Schücke, L., Schulze, J., Stapelmann, K., & Awakowicz, P. (2020). Characterisation of volume and surface dielectric barrier discharges in N 2 –O 2 mixtures using optical emission spectroscopy. Plasma Processes and Polymers, 17(6), 1900126. https://doi.org/10.1002/ppap.201900126 Cite
Mitschker, F., Schücke, L., Hoppe, C., Jaritz, M., Dahlmann, R., de los Arcos, T., Hopmann, C., Grundmeier, G., & Awakowicz, P. (2018). Comparative study on the deposition of silicon oxide permeation barrier coatings for polymers using hexamethyldisilazane (HMDSN) and hexamethyldisiloxane (HMDSO). Journal of Physics D: Applied Physics, 51(23), 235201. https://doi.org/10.1088/1361-6463/aac0ab Cite
Mitschker, F., Steves, S., Gebhard, M., Rudolph, M., Schücke, L., Kirchheim, D., Jaritz, M., Brochhagen, M., Hoppe, C., Dahlmann, R., Böke, M., Benedikt, J., Giner, I., de los Arcos, T., Hopmann, C., Grundmeier, G., Devi, A., & Awakowicz, P. (2017). Influence of PE-CVD and PE-ALD on defect formation in permeation barrier films on PET and correlation to atomic oxygen fluence. Journal of Physics D: Applied Physics, 50(23), 235201. https://doi.org/10.1088/1361-6463/aa6e28 Cite