Publikationen

Wirth, P., Oberste‐Beulmann, C., Nitsche, T., Muhler, M., & Awakowicz, P. (2024). Application of a Scaled‐up Dielectric Barrier Discharge Reactor in the Trace Oxygen Removal in Hydrogen‐Rich Gas Mixtures at Ambient and Elevated Pressure. Chemie Ingenieur Technik, cite.202400011. https://doi.org/10.1002/cite.202400011 Cite
Liu, J., Wang, X.-K., Wang, L., Zhao, K., Liu, Y., Song, Y., & Wang, Y. (2024). An experimental and computational investigation of discharge mode transitions in a partially magnetized radio frequency capacitively coupled oxygen discharge. Plasma Processes and Polymers, e2300219. https://doi.org/10.1002/ppap.202300219 Cite
Tian, C.-B., Wang, L., Vass, M., Wang, X.-K., Dong, W., Song, Y.-H., Wang, Y.-N., & Schulze, J. (2024). The detachment-induced mode in electronegative capacitively coupled radio-frequency plasmas. Plasma Sources Science and Technology, 33(7), 075008. https://doi.org/10.1088/1361-6595/ad5df8 Cite
Yu, S., Wu, H., Yang, S., Wang, L., Chen, Z., Wang, Z., Jiang, W., Schulze, J., & Zhang, Y. (2024). Kinetic simulations of capacitively coupled plasmas driven by tailored voltage waveforms with multi-frequency matching. Plasma Sources Science and Technology, 33(7), 075003. https://doi.org/10.1088/1361-6595/ad5df7 Cite
Ohtsu, Y., Tabaru, T., & Schulze, J. (2024). Characteristics of a hybrid radio frequency capacitively and inductively coupled plasma using hydrogen gas. Journal of Vacuum Science & Technology B, 42(4), 044204. https://doi.org/10.1116/5.0213602 Cite
Böddeker, S., Gröger, S., Bibinov, N., & Awakowicz, P. (2024). Characterization of a filamentary discharge ignited in a gliding arc plasmatron operated in nitrogen flow. Plasma Sources Science and Technology, 33(5), 055018. https://doi.org/10.1088/1361-6595/ad473f Cite
Ohtsu, Y., Uchida, T., Kuno, R., & Schulze, J. (2024). Production of a high-density hydrogen plasma in a capacitively coupled RF discharge with a hollow cathode enclosed by magnets. Journal of Vacuum Science & Technology A, 42(3), 033011. https://doi.org/10.1116/6.0003448 Cite
Masheyeva, R., Vass, M., Wang, X.-K., Liu, Y.-X., Derzsi, A., Hartmann, P., Schulze, J., & Donkó, Z. (2024). Electron power absorption in CF 4 capacitively coupled RF plasmas operated in the striation mode. Plasma Sources Science and Technology, 33(4), 045019. https://doi.org/10.1088/1361-6595/ad3c69 Cite
Chen, Z., Wang, H., Yu, S., Wang, Y., Chen, Z., Jiang, W., Schulze, J., & Zhang, Y. (2024). Electrical characteristics of the GEC reference cell at low pressure: a two-dimensional PIC/MCC modeling study. Plasma Sources Science and Technology, 33(4), 045003. https://doi.org/10.1088/1361-6595/ad3849 Cite
Tian, P., Kenney, J., Rauf, S., Korolov, I., & Schulze, J. (2024). Uniformity of low-pressure capacitively coupled plasmas: Experiments and two-dimensional particle-in-cell simulations. Physics of Plasmas, 31(4), 043507. https://doi.org/10.1063/5.0178911 Cite
Yarragolla, S., Hemke, T., Trieschmann, J., & Mussenbrock, T. (2024). Non-zero crossing current–voltage characteristics of interface-type resistive switching devices. Applied Physics Letters, 124(12), 123504. https://doi.org/10.1063/5.0202230 Cite
Gronenberg, O., Adejube, B., Hemke, T., Drewes, J., Asnaz, O. H., Ziegler, F., Carstens, N., Strunskus, T., Schürmann, U., Benedikt, J., Mussenbrock, T., Faupel, F., Vahl, A., & Kienle, L. (2024). In Situ Imaging of Dynamic Current Paths in a Neuromorphic Nanoparticle Network with Critical Spiking Behavior. Advanced Functional Materials, 2312989. https://doi.org/10.1002/adfm.202312989 Cite
Jüngling, E., Wilczek, S., Mussenbrock, T., Böke, M., & Von Keudell, A. (2024). Plasma sheath tailoring by a magnetic field for three-dimensional plasma etching. Applied Physics Letters, 124(7), 074101. https://doi.org/10.1063/5.0187685 Cite
Shi, D.-H., Wang, X.-K., Liu, Y.-X., Donkó, Z., Schulze, J., & Wang, Y.-N. (2024). An experimental and computational study on the ignition process of a pulse modulated dual-RF capacitively coupled plasma operated at various low-frequency voltage amplitudes. Plasma Sources Science and Technology, 33(2), 025012. https://doi.org/10.1088/1361-6595/ad257f Cite
Dong, W., Zhang, Y.-F., Schulze, J., & Song, Y.-H. (2024). Hybrid simulation of instabilities in capacitively coupled RF CF 4 /Ar plasmas driven by a dual frequency source. Plasma Sources Science and Technology, 33(2), 025020. https://doi.org/10.1088/1361-6595/ad270e Cite
Derzsi, A., Vass, M., Masheyeva, R., Horváth, B., Donkó, Z., & Hartmann, P. (2024). Frequency-dependent electron power absorption mode transitions in capacitively coupled argon-oxygen plasmas. Plasma Sources Science and Technology, 33(2), 025005. https://doi.org/10.1088/1361-6595/ad1fd5 Cite
Smith, G. J., Diomede, P., Gibson, A. R., Doyle, S. J., Guerra, V., Kushner, M. J., Gans, T., & Dedrick, J. P. (2024). Low-pressure inductively coupled plasmas in hydrogen: impact of gas heating on the spatial distribution of atomic hydrogen and vibrationally excited states. Plasma Sources Science and Technology, 33(2), 025002. https://doi.org/10.1088/1361-6595/ad1ece Cite
Schulenberg, D. A., Vass, M., Klich, M., Donkó, Z., Klotz, J., Bibinov, N., Mussenbrock, T., & Schulze, J. (2024). Mode Transition Induced by Gas Heating Along the Discharge Channel in Capacitively Coupled Atmospheric Pressure Micro Plasma Jets. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10444-6 Cite
Vass, M., Schulenberg, D., Donkó, Z., Korolov, I., Hartmann, P., Schulze, J., & Mussenbrock, T. (2024). A new 2D fluid-MC hybrid approach for simulating nonequilibrium atmospheric pressure plasmas: density distribution of atomic oxygen in radio-frequency plasma jets in He/O 2 mixtures. Plasma Sources Science and Technology, 33(1), 015012. https://doi.org/10.1088/1361-6595/ad1f37 Cite
Islam, M. H., Uchida, T., Schulze, J., & Ohtsu, Y. (2024). Effect of multi-cusp magnetic fields to generate a high-density hydrogen plasma inside a low pressure H2 cylindrical hollow cathode discharge. Vacuum, 227, 113459. https://doi.org/10.1016/j.vacuum.2024.113459 Cite
Schleitzer, J., Schneider, V., Korolov, I., Hübner, G., Hartmann, P., Schulze, J., & Kersten, H. (2024). Langmuir Probe Measurements in a Dual-Frequency Capacitively Coupled rf Discharge. IEEE Transactions on Plasma Science, 1–12. https://doi.org/10.1109/TPS.2024.3375520 Cite
Schüttler, S., Schöne, A. L., Jeß, E., Gibson, A. R., & Golda, J. (2024). Production and transport of plasma-generated hydrogen peroxide from gas to liquid. Physical Chemistry Chemical Physics, 10.1039.D3CP04290A. https://doi.org/10.1039/D3CP04290A Cite
Zhou, Y., Zhao, K., Ma, F.-F., Liu, Y.-X., Gao, F., Schulze, J., & Wang, Y.-N. (2024). Low-frequency dependence of plasma characteristics in dual-frequency capacitively coupled plasma sources. Applied Physics Letters. Cite
Ziegler, M., Mussenbrock, T., & Kohlstedt, H. (Eds.). (2024). Bio-Inspired Information Pathways: From Neuroscience to Neurotronics (Vol. 16). Springer International Publishing. https://doi.org/10.1007/978-3-031-36705-2 Cite
Dirkmann, S., Trieschmann, J., & Mussenbrock, T. (2024). Modeling and Simulation of Silver-Based Filamentary Memristive Devices. In M. Ziegler, T. Mussenbrock, & H. Kohlstedt (Eds.), Bio-Inspired Information Pathways (Vol. 16, pp. 159–176). Springer International Publishing. https://doi.org/10.1007/978-3-031-36705-2_6 Cite
Trieschmann, J., Vialetto, L., & Gergs, T. (2023). Review: Machine learning for advancing low-temperature plasma modeling and simulation. Journal of Micro/Nanopatterning, Materials, and Metrology, 22(04). https://doi.org/10.1117/1.JMM.22.4.041504 Cite
Nawrath, N., Korolov, I., Bibinov, N., Awakowicz, P., & Gibson, A. R. (2023). Spatio-temporal dynamics of electrons and helium metastables in uniform dielectric barrier discharges formed in He/N 2. Plasma Sources Science and Technology, 32(12), 125014. https://doi.org/10.1088/1361-6595/ad1513 Cite
Sun, J.-Y., Schulze, J., Ma, F.-F., Zhang, Q.-Z., & Wang, Y.-N. (2023). Similarity laws for two-dimensional simulations of low-pressure capacitively coupled radio-frequency discharges. Physics of Plasmas, 30(12), 120702. https://doi.org/10.1063/5.0175060 Cite
De Los Arcos, T., Awakowicz, P., Böke, M., Boysen, N., Brinkmann, R. P., Dahlmann, R., Devi, A., Eremin, D., Franke, J., Gergs, T., Jenderny, J., Kemaneci, E., Kühne, T. D., Kusmierz, S., Mussenbrock, T., Rubner, J., Trieschmann, J., Wessling, M., Xie, X., … Grundmeier, G. (2023). PECVD and PEALD on polymer substrates (part II): Understanding and tuning of barrier and membrane properties of thin films. Plasma Processes and Polymers, e2300186. https://doi.org/10.1002/ppap.202300186 Cite
Park, C.-W., Horváth, B., Derzsi, A., Schulze, J., Kim, J. H., Donkó, Z., & Lee, H.-C. (2023). Experimental validation of particle-in-cell/Monte Carlo collisions simulations in low-pressure neon capacitively coupled plasmas. Plasma Sources Science and Technology, 32(11), 115003. https://doi.org/10.1088/1361-6595/ad0432 Cite
De Los Arcos, T., Awakowicz, P., Benedikt, J., Biskup, B., Böke, M., Boysen, N., Buschhaus, R., Dahlmann, R., Devi, A., Gergs, T., Jenderny, J., Von Keudell, A., Kühne, T. D., Kusmierz, S., Müller, H., Mussenbrock, T., Trieschmann, J., Zanders, D., Zysk, F., & Grundmeier, G. (2023). PECVD and PEALD on polymer substrates (part I): Fundamentals and analysis of plasma activation and thin film growth. Plasma Processes and Polymers, e2300150. https://doi.org/10.1002/ppap.202300150 Cite
Böddecker, A., Passmann, M., Wilczek, S., Schücke, L., Korolov, I., Skoda, R., Mussenbrock, T., Gibson, A. R., & Awakowicz, P. (2023). Interactions Between Flow Fields Induced by Surface Dielectric Barrier Discharge Arrays. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10406-y Cite
Neuroth, C., Mujahid, Z., Berger, B., Oberste-Beulmann, C., Oppotsch, T., Zhang, Q.-Z., Muhler, M., Mussenbrock, T., Korolov, I., & Schulze, J. (2023). The effects of catalyst conductivity and loading of dielectric surface structures on plasma dynamics in patterned dielectric barrier discharges. Plasma Sources Science and Technology, 32(10), 105019. https://doi.org/10.1088/1361-6595/ad0323 Cite
Ohtsu, Y., Hiwatashi, H., & Schulze, J. (2023). Spatial distributions of the ion flux in a capacitive hydrogen RF discharge using a hollow cathode with double toroidal grooves enclosed by magnets. Japanese Journal of Applied Physics, 62(SL), SL1017. https://doi.org/10.35848/1347-4065/acdb7f Cite
Wang, Y., Yan, H., Bai, X., Li, T., Schulze, J., Wang, X., Song, J., & Zhang, Q. (2023). Effect of airflow on the discharge uniformity at different cycles in the repetitive unipolar nanosecond‐pulsed dielectric barrier discharge. Plasma Processes and Polymers, e2300076. https://doi.org/10.1002/ppap.202300076 Cite
Wang, X.-K., Masheyeva, R., Liu, Y.-X., Hartmann, P., Schulze, J., & Donkó, Z. (2023). The electrical asymmetry effect in electronegative CF 4 capacitive RF plasmas operated in the striation mode. Plasma Sources Science and Technology, 32(8), 085009. https://doi.org/10.1088/1361-6595/acec96 Cite
Nösges, K., Klich, M., Derzsi, A., Horváth, B., Schulze, J., Brinkmann, R. P., Mussenbrock, T., & Wilczek, S. (2023). Nonlocal dynamics of secondary electrons in capacitively coupled radio frequency discharges. Plasma Sources Science and Technology, 32(8), 085008. https://doi.org/10.1088/1361-6595/ace848 Cite
Sun, J.-Y., Zhang, Q.-Z., Schulze, J., & Wang, Y.-N. (2023). Resonant electron confinement and sheath expansion heating in magnetized capacitive oxygen discharges. Plasma Sources Science and Technology, 32(7), 075003. https://doi.org/10.1088/1361-6595/ace1a5 Cite
Ohtsu, Y., Hara, K., Imoto, S., Schulze, J., Yasunaga, T., & Ikegami, Y. (2023). Spatial structures of rf ring-shaped magnetized sputtering plasmas with two facing cylindrical ZnO/Al 2 O 3 targets. Japanese Journal of Applied Physics, 62(SI), SI1007. https://doi.org/10.35848/1347-4065/acc7aa Cite
Ollegott, K., Wirth, P., Oberste-Beulmann, C., Sakthi, G. S. M., Magazova, A., Hermanns, P., Peters, N., Schücke, L., Bracht, V., Agar, D. W., Awakowicz, P., & Muhler, M. (2023). Investigation of flow characteristics in a twin-surface dielectric barrier discharge reactor by Schlieren imaging. Journal of Physics D: Applied Physics, 56(26), 265201. https://doi.org/10.1088/1361-6463/acc956 Cite
Donkó, Z., Hartmann, P., Korolov, I., Schulenberg, D., Rohr, S., Rauf, S., & Schulze, J. (2023). Metastable argon atom kinetics in a low-pressure capacitively coupled radio frequency discharge. Plasma Sources Science and Technology, 32(6), 065002. https://doi.org/10.1088/1361-6595/acd6b5 Cite
Gergs, T., Mussenbrock, T., & Trieschmann, J. (2023). Physics-separating artificial neural networks for predicting sputtering and thin film deposition of AlN in Ar/N 2 discharges on experimental timescales. Journal of Physics D: Applied Physics, 56(19), 194001. https://doi.org/10.1088/1361-6463/acc07e Cite
Feibel, D., Golda, J., Held, J., Awakowicz, P., Schulz-von Der Gathen, V., Suschek, C. V., Opländer, C., & Jansen, F. (2023). Gas Flow-Dependent Modification of Plasma Chemistry in μAPP Jet-Generated Cold Atmospheric Plasma and Its Impact on Human Skin Fibroblasts. Biomedicines, 11(5), 1242. https://doi.org/10.3390/biomedicines11051242 Cite
Bracht, V., Gembus, J.-L., Bibinov, N., & Awakowicz, P. (2023). Surface modifications of aluminium and aluminium oxide induced by a treatment with a He-plasma jet and plasma electrolytic oxidation. Journal of Physics D: Applied Physics, 56(16), 165201. https://doi.org/10.1088/1361-6463/acbd5e Cite
Eremin, D., Kemaneci, E., Matsukuma, M., Mussenbrock, T., & Brinkmann, R. P. (2023). Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 32(4), 044007. https://doi.org/10.1088/1361-6595/accecb Cite
Eremin, D., Engel, D., Krüger, D., Wilczek, S., Berger, B., Oberberg, M., Wölfel, C., Smolyakov, A., Lunze, J., Awakowicz, P., Schulze, J., & Brinkmann, R. P. (2023). Electron dynamics in planar radio frequency magnetron plasmas: I. The mechanism of Hall heating and the µ-mode. Plasma Sources Science and Technology, 32(4), 045007. https://doi.org/10.1088/1361-6595/acc481 Cite
Eremin, D., Berger, B., Engel, D., Kallähn, J., Köhn, K., Krüger, D., Xu, L., Oberberg, M., Wölfel, C., Lunze, J., Awakowicz, P., Schulze, J., & Brinkmann, R. P. (2023). Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code. Plasma Sources Science and Technology, 32(4), 045008. https://doi.org/10.1088/1361-6595/acc47f Cite
Wang, L., Hartmann, P., Donkó, Z., Song, Y.-H., & Schulze, J. (2023). Effects of a radial variation of surface coefficients on plasma uniformity in capacitive RF discharges. Plasma Sources Science and Technology, 32(4), 045002. https://doi.org/10.1088/1361-6595/acc6e9 Cite
Berger, B., Eremin, D., Oberberg, M., Engel, D., Wölfel, C., Zhang, Q.-Z., Awakowicz, P., Lunze, J., Brinkmann, R. P., & Schulze, J. (2023). Electron dynamics in planar radio frequency magnetron plasmas: III. Comparison of experimental investigations of power absorption dynamics to simulation results. Plasma Sources Science and Technology, 32(4), 045009. https://doi.org/10.1088/1361-6595/acc480 Cite
Rauf, S., Schroeder, M., Korolov, I., Kenney, J., & Schulze, J. (2023). Plasma dynamics in a capacitively coupled discharge driven by a combination of a single high frequency and a tailored low frequency rectangular voltage waveform. Plasma Sources Science and Technology, 32(3), 034002. https://doi.org/10.1088/1361-6595/acc12d Cite