Head of the Research Group Biomedical Plasma Technology
Address
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Biomedizinisch Angewandte Plasmatechnik
Universitätsstraße 150
D-44801 Bochum, Germany
Room
ID 1/517
Phone
+49 234 32 29445
Email
gibson(at)aept.rub.de
Other Websites
https://etit.ruhr-uni-bochum.de/en/faculty/professorships/prof-dr-andrew-gibson/
Publication Record
Google Scholar: https://scholar.google.com/citations?user=22SZ7RkAAAAJ
Publikationen
2825793
Gibson
apa
50
date
desc
year
1
Gibson
291
https://www.aept.ruhr-uni-bochum.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-322de365740c1230edd179f208acdc2c%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22MTCI4IMV%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22B%5Cu00f6ddecker%20et%20al.%22%2C%22parsedDate%22%3A%222025-01-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EB%26%23xF6%3Bddecker%2C%20A.%2C%20Passmann%2C%20M.%2C%20Segura%2C%20A.%20N.%20T.%2C%20Bodnar%2C%20A.%2C%20Awakowicz%2C%20F.%2C%20Oppotsch%2C%20T.%2C%20Muhler%2C%20M.%2C%20Awakowicz%2C%20P.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Korolov%2C%20I.%2C%20%26amp%3B%20Mussenbrock%2C%20T.%20%282025%29.%20The%20role%20of%20flow%20field%20dynamics%20in%20enhancing%20volatile%20organic%20compound%20conversion%20in%20a%20surface%20dielectric%20barrier%20discharge%20system.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E58%3C%5C%2Fi%3E%282%29%2C%20025208.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fad8454%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fad8454%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DMTCI4IMV%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20role%20of%20flow%20field%20dynamics%20in%20enhancing%20volatile%20organic%20compound%20conversion%20in%20a%20surface%20dielectric%20barrier%20discharge%20system%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximilian%22%2C%22lastName%22%3A%22Passmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Angie%20Natalia%20Torres%22%2C%22lastName%22%3A%22Segura%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arisa%22%2C%22lastName%22%3A%22Bodnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%22%2C%22lastName%22%3A%22Oppotsch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20investigates%20the%20correlation%20between%20flow%20fields%20induced%20by%20a%20surface%20dielectric%20barrier%20discharge%20%28SDBD%29%20system%20and%20its%20application%20for%20the%20volatile%20organic%20compound%20gas%20conversion%20process.%20As%20a%20benchmark%20molecule%2C%20the%20conversion%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20is%20monitored%20using%20flame%20ionization%20detectors%2C%20while%20the%20flow%20field%20is%20analyzed%20using%20planar%20particle%20image%20velocimetry.%20Two%20individual%20setups%20are%20developed%20to%20facilitate%20both%20conversion%20measurement%20and%20investigation%20of%20induced%20fluid%20dynamics.%20Varying%20the%20gap%20distance%20between%20two%20SDBD%20electrode%20plates%20for%20three%20different%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20mole%20fractions%20reveals%20local%20peaks%20in%20relative%20conversion%20around%20gap%20distances%20of%2016%5Cu201322%5Cu2009mm%2C%20indicating%20additional%20spatially%20dependent%20effects.%20The%20lowest%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20mole%20fractions%20exhibit%20the%20highest%20relative%20conversion%2C%20while%20the%20highest%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20mole%20fraction%20conversion%20yields%20the%20greatest%20number%20of%20converted%20molecules%20per%20unit%20time.%20Despite%20maintaining%20constant%20energy%20density%2C%20the%20relative%20conversion%20exhibits%20a%20gradual%20decrease%20with%20increasing%20distances.%20The%20results%20of%20the%20induced%20flow%20fields%20reveal%20distinct%20vortex%20structures%20at%20the%20top%20and%20bottom%20electrodes%2C%20which%20evolve%20in%20size%20and%20shape%20as%20the%20gap%20distances%20increase.%20These%20vortices%20exhibit%20gas%20velocity%20magnitudes%20approximately%20seven%20times%20higher%20than%20the%20applied%20external%20gas%20flow%20velocity.%20Vorticity%20and%20turbulent%20kinetic%20energy%20analyses%20provide%20insights%20intothese%20structures%5Cu2019%20characteristics%20and%20their%20impact%20on%20gas%20mixing.%20A%20comparison%20of%20line%20profiles%20through%20the%20center%20of%20the%20vortices%20shows%20peaks%20in%20the%20middle%20gap%20region%20for%20the%20same%20gap%20distances%2C%20correlating%20with%20the%20observed%20peaks%20in%20conversion.%20These%20findings%20demonstrate%20a%20correlation%20between%20induced%20flow%20dynamics%20and%20the%20gas%20conversion%20process%2C%20bridging%20plasma%20actuator%20studies%20with%20the%20domain%20of%20chemical%20plasma%20gas%20conversion.%22%2C%22date%22%3A%222025-01-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fad8454%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fad8454%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-10-25T16%3A21%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22LCD55GLN%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22He%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHe%2C%20Y.%2C%20Kuhfeld%2C%20J.%2C%20Lepikhin%2C%20N.%20D.%2C%20Czarnetzki%2C%20U.%2C%20Guerra%2C%20V.%2C%20Peter%20Brinkmann%2C%20R.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Kemaneci%2C%20E.%20%282024%29.%20Zero-dimensional%20simulations%20of%20DC%20ns-pulsed%20plasma%20jet%20in%20N%3Csub%3E2%3C%5C%2Fsub%3E%20at%20near%20atmospheric%20pressure%3A%20validation%20of%20the%20vibrational%20kinetics.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%2811%29%2C%20115011.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8a86%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8a86%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DLCD55GLN%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Zero-dimensional%20simulations%20of%20DC%20ns-pulsed%20plasma%20jet%20in%20N%3Csub%3E2%3C%5C%2Fsub%3E%20at%20near%20atmospheric%20pressure%3A%20validation%20of%20the%20vibrational%20kinetics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Youfan%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%22%2C%22lastName%22%3A%22Kuhfeld%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%20D%22%2C%22lastName%22%3A%22Lepikhin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Czarnetzki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasco%22%2C%22lastName%22%3A%22Guerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%22%2C%22lastName%22%3A%22Peter%20Brinkmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Efe%22%2C%22lastName%22%3A%22Kemaneci%22%7D%5D%2C%22abstractNote%22%3A%22A%20Direct%20current%20%28DC%29%20nanosecond%20%28ns%29-pulsed%20plasma%20jet%20fed%20with%20N2%20at%20near%20atmospheric%20pressure%20%2820%20000%20Pa%29%20is%20studied%20using%20a%20transient%20zero-dimensional%20%280-D%29%20model%20coupled%20with%20a%20two-term%20Boltzmann%20equation%20solver.%20Good%20agreement%20is%20observed%20between%20the%20simulated%20and%20measured%20plasma%20properties%3A%20including%20the%20electron%20density%20and%20the%20ratios%20of%20the%20N2%28v%20%3D%201%2C%202%2C%203%2C%204%29%20densities%20to%20the%20gas%20density.%20A%20variety%20of%20theoretical%20approaches%20are%20considered%20to%20determine%20the%20Vibrational-Vibrational%20%28V-V%29%20and%20Vibrational-Translational%20%28V-T%29%20rate%20coefficients.%20For%20the%20V-V%20kinetics%2C%20the%20simple%20form%20of%20an%20Harmonic%20Oscillator%20%28sfHO%29%2C%20the%20Schwartz-Slawsky-Herzfeld%20%28SSH%29%20and%20the%20Forced%20Harmonic%20Oscillator%20%28FHO%29%20approaches%20are%20used.%20The%20SSH%20approach%20used%20in%20this%20study%20is%20an%20improved%20version%20based%20on%20the%20pure%20SSH%20approach.%20For%20the%20V-T%20kinetics%2C%20the%20sfHO%2C%20a%20fit%20function%20of%20the%20Semi-Classical%20%28ffSC%29%20calculations%20and%20a%20fit%20function%20of%20the%20Quasi-Classical%20Trajectory%20%28ffQCT%29%20calculations%20are%20used.%20The%20influence%20of%20these%20different%20approaches%20on%20the%20calculated%20temporal%20evolution%20profiles%20of%20the%20vibrational%20distribution%20functions%20%28VDFs%29%20within%20one%20pulse%20modulation%20cycle%20is%20revealed.%20It%20is%20observed%20that%20the%20use%20of%20these%20different%20approaches%20does%20not%20strongly%20affect%20the%20densities%20of%20the%20low%20vibrational%20levels%20%28v%20%3C%205%29%2C%20whereas%20larger%20influences%20on%20the%20higher%20level%20densities%20are%20found.%20In%20addition%2C%20it%20is%20found%20that%20the%20simulated%20evolution%20of%20the%20VDFs%20are%20sensitive%20to%20the%20probabilities%20of%20the%20neutral%20wall%20reaction%20N2%28v%29%20%2B%20wall%20%5Cu2192%20N2%28v%20%5Cu2212%201%29%20in%20the%20range%20of%201%20%5Cu00d7%2010%5Cu22122%20to%201%20%5Cu00d7%2010%5Cu22124.%20A%20further%20analysis%20of%20the%20wall%20quenching%20probabilities%20of%20N2%280%20%3C%20v%20%3C%2058%29%20is%20of%20importance%20for%20a%20more%20accurate%20prediction%20of%20the%20VDFs.%22%2C%22date%22%3A%222024-11-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad8a86%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad8a86%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-11-29T18%3A40%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22A3SVVW2X%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Osca%20Engelbrecht%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EOsca%20Engelbrecht%2C%20M.%2C%20Jenderny%2C%20J.%2C%20Hylla%2C%20H.%2C%20Filla%2C%20D.%2C%20Awakowicz%2C%20P.%2C%20Korolov%2C%20I.%2C%20Ridgers%2C%20C.%20P.%2C%20%26amp%3B%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%20%282024%29.%20Numerical%20investigation%20of%20vacuum%20ultra-violet%20emission%20in%20Ar%5C%2FO%20%3Csub%3E2%3C%5C%2Fsub%3E%20inductively%20coupled%20plasmas.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%289%29%2C%20095008.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad7059%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad7059%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DA3SVVW2X%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Numerical%20investigation%20of%20vacuum%20ultra-violet%20emission%20in%20Ar%5C%2FO%20%3Csub%3E2%3C%5C%2Fsub%3E%20inductively%20coupled%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Osca%20Engelbrecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%22%2C%22lastName%22%3A%22Jenderny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henrik%22%2C%22lastName%22%3A%22Hylla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominik%22%2C%22lastName%22%3A%22Filla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20P%22%2C%22lastName%22%3A%22Ridgers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%5D%2C%22abstractNote%22%3A%22Controlling%20fluxes%20of%20vacuum%20ultraviolet%20%28VUV%29%20radiation%20is%20important%20in%20a%20number%20of%20industrial%20and%20biomedical%20applications%20of%20low%20pressure%20plasma%20sources%20because%2C%20depending%20on%20the%20process%2C%20VUV%20radiation%20may%20be%20desired%2C%20required%20to%20a%20certain%20degree%2C%20or%20unwanted.%20In%20this%20work%2C%20the%20emission%20of%20VUV%20radiation%20from%20O%20atoms%20is%20investigated%20in%20low-pressure%20Ar%5C%2FO2%20inductively%20coupled%20plasmas%20via%20numerical%20simulations.%20For%20this%20purpose%2C%20a%20self-consistent%20Ar%5C%2FO2%20plasma-chemical%20reaction%20scheme%20has%20been%20implemented%20in%20a%20zero%20dimensional%20plasma%20chemical%20kinetics%20model%20and%20is%20used%20to%20investigate%20VUV%20emission%20from%20excited%20O%20atoms%20%283s%205S02%20and%203s%203S01%29%20at%20130%20and%20135%20nm.%20The%20model%20is%20extensively%20compared%20with%20experimental%20measurements%20of%20absolute%20VUV%20emission%20intensities%2C%20electron%20densities%20and%20Ar%20excited%20state%20densities.%20In%20addition%2C%20oxygen%20VUV%20emission%20intensities%20are%20investigated%20as%20a%20function%20of%20pressure%2C%20Ar%5C%2FO2%20mixture%2C%20and%20power%20deposition%20and%20the%20dominant%20reaction%20pathways%20leading%20to%20oxygen%20VUV%20emission%20are%20identified%20and%20described.%20In%20general%20terms%2C%20absolute%20oxygen%20VUV%20emission%20intensities%20increase%20with%20power%20and%20oxygen%20fraction%20over%20the%20ranges%20investigated%20and%20peak%20emission%20intensities%20are%20found%20for%20pressures%20between%205%5Cu201350%20Pa.%20The%20emission%20is%20dominated%20by%20the%20130%20nm%20resonance%20line%20from%20the%20decay%20of%20the%20O%283s%203S01%29%20state%20to%20the%20ground%20state.%20Besides%2C%20at%20low%20pressure%20%280.3%5Cu20131%20Pa%29%2C%20the%20flux%20of%20oxygen%20VUV%20photons%20to%20surfaces%20is%20much%20lower%20than%20that%20of%20positive%20ions%2C%20whereas%20oxygen%20VUV%20fluxes%20dominate%20at%20higher%20pressure%2C%20%5Cu22735%5Cu201350%20Pa%20depending%20on%20O2%20fraction.%20Finally%2C%20oxygen%20atom%20fluxes%20to%20surfaces%20are%2C%20in%20general%2C%20larger%20than%20those%20of%20VUV%20photons%20for%20the%20parameter%20space%20investigated.%22%2C%22date%22%3A%222024-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad7059%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad7059%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-09-23T16%3A27%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22KQ3VZ8YW%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Smith%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESmith%2C%20G.%20J.%2C%20Diomede%2C%20P.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Doyle%2C%20S.%20J.%2C%20Guerra%2C%20V.%2C%20Kushner%2C%20M.%20J.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20Dedrick%2C%20J.%20P.%20%282024%29.%20Low-pressure%20inductively%20coupled%20plasmas%20in%20hydrogen%3A%20impact%20of%20gas%20heating%20on%20the%20spatial%20distribution%20of%20atomic%20hydrogen%20and%20vibrationally%20excited%20states.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%282%29%2C%20025002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1ece%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1ece%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DKQ3VZ8YW%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Low-pressure%20inductively%20coupled%20plasmas%20in%20hydrogen%3A%20impact%20of%20gas%20heating%20on%20the%20spatial%20distribution%20of%20atomic%20hydrogen%20and%20vibrationally%20excited%20states%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%20J%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paola%22%2C%22lastName%22%3A%22Diomede%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasco%22%2C%22lastName%22%3A%22Guerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22Non-equilibrium%20inductively%20coupled%20plasmas%20%28ICPs%29%20operating%20in%20hydrogen%20are%20of%20significant%20interest%20for%20applications%20including%20large-area%20materials%20processing.%20Increasing%20control%20of%20spatial%20gas%20heating%2C%20which%20drives%20the%20formation%20of%20neutral%20species%20density%20gradients%20and%20the%20rate%20of%20gas-temperature-dependent%20reactions%2C%20is%20critical.%20In%20this%20study%2C%20we%20use%202D%20fluid-kinetic%20simulations%20with%20the%20Hybrid%20Plasma%20Equipment%20Model%20to%20investigate%20the%20spatially%20resolved%20production%20of%20atomic%20hydrogen%20in%20a%20low-pressure%20planar%20ICP%20operating%20in%20pure%20hydrogen%20%2810%5Cu201320%20Pa%20or%200.075%5Cu20130.15%20Torr%2C%20300%20W%29.%20The%20reaction%20set%20incorporates%20self-consistent%20calculation%20of%20the%20spatially%20resolved%20gas%20temperature%20and%2014%20vibrationally%20excited%20states.%20We%20find%20that%20the%20formation%20of%20neutral-gas%20density%20gradients%2C%20which%20result%20from%20spatially%20non-uniform%20electrical%20power%20deposition%20at%20constant%20pressure%2C%20can%20drive%20significant%20variations%20in%20the%20vibrational%20distribution%20function%20and%20density%20of%20atomic%20hydrogen%20when%20gas%20heating%20is%20spatially%20resolved.%20This%20highlights%20the%20significance%20of%20spatial%20gas%20heating%20on%20the%20production%20of%20reactive%20species%20in%20relatively%20high-power-density%20plasma%20processing%20sources.%22%2C%22date%22%3A%222024-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad1ece%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1ece%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-02-03T11%3A12%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22MHDRMRDM%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fcttler%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bttler%2C%20S.%2C%20Sch%26%23xF6%3Bne%2C%20A.%20L.%2C%20Je%26%23xDF%3B%2C%20E.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Golda%2C%20J.%20%282024%29.%20Production%20and%20transport%20of%20plasma-generated%20hydrogen%20peroxide%20from%20gas%20to%20liquid.%20%3Ci%3EPhysical%20Chemistry%20Chemical%20Physics%3C%5C%2Fi%3E%2C%2010.1039.D3CP04290A.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3CP04290A%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3CP04290A%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DMHDRMRDM%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Production%20and%20transport%20of%20plasma-generated%20hydrogen%20peroxide%20from%20gas%20to%20liquid%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steffen%22%2C%22lastName%22%3A%22Sch%5Cu00fcttler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%20Lena%22%2C%22lastName%22%3A%22Sch%5Cu00f6ne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emanuel%22%2C%22lastName%22%3A%22Je%5Cu00df%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Judith%22%2C%22lastName%22%3A%22Golda%22%7D%5D%2C%22abstractNote%22%3A%22The%20transport%20of%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20OH%20from%20an%20atmospheric%20pressure%20plasma%20jet%20to%20a%20liquid%20sample%20are%20investigated%20using%20multiple%20detection%20techniques%20and%20a%20plasma-chemical%20global%20model.%20Scaling%20and%20formation%20pathways%20species%20are%20presented%20and%20discussed.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%2C%20the%20transport%20of%20hydroxyl%20radicals%20and%20hydrogen%20peroxide%20from%20a%20humid%20atmospheric%20pressure%20plasma%20jet%20into%20plasma-treated%20liquids%20is%20analysed.%20The%20concentration%20of%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20measured%20by%20a%20spectrophotometric%20approach%20using%20the%20reagent%20ammonium%20metavanadate.%20OH%20was%20measured%20by%20the%20terephthalic%20acid%20dosimeter%20and%20the%20chemiluminescence%20of%20luminol.%20The%20plasma%20jet%20used%20is%20based%20on%20the%20design%20of%20the%20well-investigated%20COST%20reference%20jet%20and%20is%20extended%20by%20a%20capillary%20between%20the%20two%20electrodes.%20In%20addition%20to%20the%20experiments%2C%20the%200-dimensional%20plasma-chemical%20kinetics%20code%20GlobalKin%20was%20used%20to%20analyse%20the%20plasma%20chemistry%20in%20the%20gas%20phase%20in%20more%20detail.%20After%205%20min%20plasma%20treatment%2C%20a%20maximum%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20concentration%20of%201%20mM%20was%20found%20in%20the%20liquid%2C%20while%20the%20OH%20concentration%20was%20a%20factor%2050%20lower.%20The%20concentrations%20of%20both%20species%20in%20the%20liquid%20increased%20with%20plasma%20power%2C%20and%20the%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20concentration%20also%20increased%20with%20the%20humidity%20concentration%20of%20the%20feed%20gas%2C%20while%20the%20OH%20concentration%20first%20increased%20with%20humidity%20admixture%20and%20then%20decreased.%20The%20transport%20of%20both%20species%20could%20be%20controlled%20by%20the%20treatment%20distance%2C%20the%20gas%20flow%20rate%20and%20low%20frequency%20pulsing%20of%20the%20RF%20jet%20in%20such%20a%20way%20that%20the%20selectivity%20towards%20the%20long-lived%20species%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20increased.%20Qualitative%20trends%20in%20the%20simulated%20number%20densities%20of%20gas%20phase%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20OH%20at%20the%20location%20of%20the%20gas%5Cu2013liquid%20interface%20fit%20relatively%20well%20to%20the%20experimental%20measurements%20in%20the%20liquid.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD3CP04290A%22%2C%22ISSN%22%3A%221463-9076%2C%201463-9084%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD3CP04290A%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-02-28T17%3A03%3A46Z%22%7D%7D%2C%7B%22key%22%3A%2265LNT5SI%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nawrath%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENawrath%2C%20N.%2C%20Korolov%2C%20I.%2C%20Bibinov%2C%20N.%2C%20Awakowicz%2C%20P.%2C%20%26amp%3B%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%20%282023%29.%20Spatio-temporal%20dynamics%20of%20electrons%20and%20helium%20metastables%20in%20uniform%20dielectric%20barrier%20discharges%20formed%20in%20He%5C%2FN%20%3Csub%3E2%3C%5C%2Fsub%3E.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%2812%29%2C%20125014.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1513%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1513%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D65LNT5SI%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatio-temporal%20dynamics%20of%20electrons%20and%20helium%20metastables%20in%20uniform%20dielectric%20barrier%20discharges%20formed%20in%20He%5C%2FN%20%3Csub%3E2%3C%5C%2Fsub%3E%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Nawrath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%5D%2C%22abstractNote%22%3A%22A%20uniform%20atmospheric%20pressure%20dielectric%20barrier%20discharge%20is%20operated%20in%20helium%20with%20an%20admixture%20%280.45%25%29%20of%20nitrogen.%20The%20discharge%20is%20ignited%20in%20the%20gas%20gap%20between%20a%20driven%20and%20a%20grounded%20electrode%20and%20propagates%20along%20the%20dielectric%20surface%20outside%20the%20gap.%20Plasma%20conditions%20are%20characterised%20with%20current%20and%20voltage%20measurements%20and%20by%20application%20of%20absolutely%20calibrated%20optical%20emission%20spectroscopy%2C%20with%20a%20focus%20on%20nitrogen%20molecular%20emission.%20Plasma%20parameters%2C%20namely%20electron%20density%20and%20reduced%20electric%20field%2C%20are%20determined%20with%20spatial%20and%20temporal%20resolution%20in%20the%20frame%20of%20a%20collisional-radiative%20model%20using%20a%20calibrated%20charge%20coupled%20device%20camera%20and%20Abel%20inversion%20of%20measured%20images.%20The%20density%20of%20an%20effective%20helium%20metastable%20state%20is%20calculated%20using%20the%20measured%20plasma%20parameters%20and%20compared%20with%20values%20of%20the%20He%2823S%29%20state%20density%20measured%20with%20tunable%20diode%20laser%20absorption%20spectroscopy.%22%2C%22date%22%3A%222023-12-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fad1513%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fad1513%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-01-08T09%3A54%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22UJGG2LPT%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22B%5Cu00f6ddecker%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-11%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EB%26%23xF6%3Bddecker%2C%20A.%2C%20Passmann%2C%20M.%2C%20Wilczek%2C%20S.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Korolov%2C%20I.%2C%20Skoda%2C%20R.%2C%20Mussenbrock%2C%20T.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282023%29.%20Interactions%20Between%20Flow%20Fields%20Induced%20by%20Surface%20Dielectric%20Barrier%20Discharge%20Arrays.%20%3Ci%3EPlasma%20Chemistry%20and%20Plasma%20Processing%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10406-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs11090-023-10406-y%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DUJGG2LPT%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interactions%20Between%20Flow%20Fields%20Induced%20by%20Surface%20Dielectric%20Barrier%20Discharge%20Arrays%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximilian%22%2C%22lastName%22%3A%22Passmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Wilczek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romuald%22%2C%22lastName%22%3A%22Skoda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22This%20study%20investigates%20the%20flow%20field%20induced%20by%20a%20surface%20dielectric%20barrier%20discharge%20%28SDBD%29%20system%2C%20known%20for%20its%20efficient%20pollution%20remediation%20of%20volatile%20organic%20compounds%20%28VOCs%29.%20We%20aim%20to%20understand%20the%20flow%20dynamics%20that%20contribute%20to%20the%20high%20conversion%20observed%20in%20similar%20systems%20using%20this%20specific%20SDBD%20design.%20Examining%20how%20the%20surface%20discharge%20affects%20the%20gas%20mixing%20in%20chemical%20processes%20is%20important%20for%20both%20understanding%20the%20fundamentals%20and%20for%20potential%20industrial%20applications.%20Experimental%20techniques%2C%20including%20schlieren%20imaging%20and%20particle%20image%20velocimetry%20%28PIV%29%2C%20applied%20with%20high%20temporal%20resolution%2C%20were%20used%20to%20analyse%20the%20flow%20field.%20Complementary%2C%20fluid%20simulations%20are%20employed%20to%20investigate%20the%20coupling%20between%20streamer%20and%20gas%20dynamics.%20Results%20show%20distinct%20fluid%20field%20behaviours%20for%20different%20electrode%20configurations%2C%20which%20differ%20in%20geometric%20complexity.%20The%20fluid%20field%20analysis%20of%20the%20most%20basic%20electrode%20design%20revealed%20behaviours%20commonly%20observed%20in%20actuator%20studies.%20The%20simulation%20results%20indicate%20the%20local%20information%20about%20the%20electron%20density%20as%20well%20as%20different%20temporal%20phases%20of%20the%20fluid%20flow%20velocity%20field%20containing%20the%20development%20of%20the%20experimental%20found%20vortex%20structure%2C%20its%20direction%20and%20speed%20of%20rotation.%20The%20electrode%20design%20with%20mostly%20parallel%20grid%20line%20structures%20exhibits%20confined%20vortices%20near%20the%20surface.%20In%20contrast%2C%20an%20electrode%20design%20also%20used%20in%20previous%20studies%2C%20is%20shown%20to%20promote%20strong%20gas%20transport%20through%20extended%20vortex%20structures%2C%20enhancing%20gas%20mixing%20and%20potentially%20explaining%20the%20high%20conversion%20observed.%22%2C%22date%22%3A%222023-10-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs11090-023-10406-y%22%2C%22ISSN%22%3A%220272-4324%2C%201572-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs11090-023-10406-y%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-10-20T16%3A00%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22LQNMBE6U%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Davies%20et%20al.%22%2C%22parsedDate%22%3A%222023-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDavies%2C%20H.%20L.%2C%20Guerra%2C%20V.%2C%20van%20der%20Woude%2C%20M.%2C%20Gans%2C%20T.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%20%282023%29.%20Vibrational%20kinetics%20in%20repetitively%20pulsed%20atmospheric%20pressure%20nitrogen%20discharges%3A%20average-power-dependent%20switching%20behaviour.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%281%29%2C%20014003.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faca9f4%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faca9f4%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DLQNMBE6U%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Vibrational%20kinetics%20in%20repetitively%20pulsed%20atmospheric%20pressure%20nitrogen%20discharges%3A%20average-power-dependent%20switching%20behaviour%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helen%20L%22%2C%22lastName%22%3A%22Davies%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasco%22%2C%22lastName%22%3A%22Guerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marjan%22%2C%22lastName%22%3A%22van%20der%20Woude%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Characterisation%20of%20the%20vibrational%20kinetics%20in%20nitrogen-based%20plasmas%20at%20atmospheric%20pressure%20is%20crucial%20for%20understanding%20the%20wider%20plasma%20chemistry%2C%20which%20is%20important%20for%20a%20variety%20of%20biomedical%2C%20agricultural%20and%20chemical%20processing%20applications.%20In%20this%20study%2C%20a%200-dimensional%20plasma%20chemical-kinetics%20model%20has%20been%20used%20to%20investigate%20vibrational%20kinetics%20in%20repetitively%20pulsed%2C%20atmospheric%20pressure%20plasmas%20operating%20in%20pure%20nitrogen%2C%20under%20application-relevant%20conditions%20%28average%20plasma%20powers%20of%200.23%5Cu20134.50%5Cu2009W%2C%20frequencies%20of%201%5Cu201310%5Cu2009kHz%2C%20and%20peak%20pulse%20powers%20of%2023%5Cu2013450%5Cu2009W%29.%20Simulations%20predict%20that%20vibrationally%20excited%20state%20production%20is%20dominated%20by%20electron-impact%20processes%20at%20lower%20average%20plasma%20powers.%20When%20the%20average%20plasma%20power%20increases%20beyond%20a%20certain%20limit%2C%20due%20to%20increased%20pulse%20frequency%20or%20peak%20pulse%20power%2C%20there%20is%20a%20switch%20in%20behaviour%2C%20and%20production%20of%20vibrationally%20excited%20states%20becomes%20dominated%20by%20vibrational%20energy%20transfer%20processes%20%28vibration%5Cu2013vibration%20%28V%5Cu2013V%29%20and%20vibration%5Cu2013translation%20%28V%5Cu2013T%29%20reactions%29.%20At%20this%20point%2C%20the%20population%20of%20vibrational%20levels%20up%20to%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20v%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2a7d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2040%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20increases%20significantly%2C%20as%20a%20result%20of%20V%5Cu2013V%20reactions%20causing%20vibrational%20up-pumping.%20At%20average%20plasma%20powers%20close%20to%20where%20the%20switching%20behaviour%20occurs%2C%20there%20is%20potential%20to%20control%20the%20energy%20efficiency%20of%20vibrational%20state%20production%2C%20as%20small%20increases%20in%20energy%20deposition%20result%20in%20large%20increases%20in%20vibrational%20state%20densities.%20Subsequent%20pathways%20analysis%20reveals%20that%20energy%20in%20the%20vibrational%20states%20can%20also%20influence%20the%20wider%20reaction%20chemistry%20through%20vibrational%5Cu2013electronic%20%28V%5Cu2013E%29%20linking%20reactions%20%28N%20%2B%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2040%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2a7d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20v%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2a7d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2045%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2192%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20D%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20N%20%2B%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2039%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2a7d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20v%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2a7d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2045%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2192%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%2B%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2032%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%2C%20which%20result%20in%20increased%20Penning%20ionisation%20and%20an%20increased%20average%20electron%20density.%20Overall%2C%20this%20study%20investigates%20the%20potential%20for%20delineating%20the%20processes%20by%20which%20electronically%20and%20vibrationally%20excited%20species%20are%20produced%20in%20nitrogen%20plasmas.%20Therefore%2C%20potential%20routes%20by%20which%20nitrogen-containing%20plasma%20sources%20could%20be%20tailored%2C%20both%20in%20terms%20of%20chemical%20composition%20and%20energy%20efficiency%2C%20are%20highlighted.%22%2C%22date%22%3A%222023-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faca9f4%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faca9f4%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-02-09T16%3A09%3A45Z%22%7D%7D%2C%7B%22key%22%3A%222Y4U454U%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Steuer%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESteuer%2C%20D.%2C%20van%20Impel%2C%20H.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Schulz-von%20der%20Gathen%2C%20V.%2C%20B%26%23xF6%3Bke%2C%20M.%2C%20%26amp%3B%20Golda%2C%20J.%20%282022%29.%20State%20enhanced%20actinometry%20in%20the%20COST%20microplasma%20jet.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%2810%29%2C%2010LT01.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac90e8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac90e8%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D2Y4U454U%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22State%20enhanced%20actinometry%20in%20the%20COST%20microplasma%20jet%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Steuer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henrik%22%2C%22lastName%22%3A%22van%20Impel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Schulz-von%20der%20Gathen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marc%22%2C%22lastName%22%3A%22B%5Cu00f6ke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Judith%22%2C%22lastName%22%3A%22Golda%22%7D%5D%2C%22abstractNote%22%3A%22A%20new%20actinometry%20approach%2C%20helium%20state%20enhanced%20actinometry%20%28SEA%29%2C%20is%20presented.%20This%20diagnostic%20uses%20the%20emission%20of%20the%20atomic%20states%20O%283p3P%29%20%28%5Cu03bb%20%3D%20844.6%20nm%29%2C%20Ar%282p1%29%20%28%5Cu03bb%20%3D%20750.4%20nm%29%20and%20He%2833S%29%20%28%5Cu03bb%20%3D%20706.5%20nm%29%20and%20allows%20the%20atomic%20oxygen%20density%20and%20the%20mean%20electron%20energy%20to%20be%20determined%20simultaneously%20from%20the%20spectral%20line%20intensity%20ratios.%20Here%2C%20the%20atomic%20states%20are%20selected%20in%20a%20way%20that%20they%20cover%20a%20wide%20range%20of%20the%20electron%20energy%20distribution%20function%20%28EEDF%29.%20The%20method%20is%20compared%20to%20the%20classical%20actinometry%20approach%20and%20energy%20resolved%20actinometry%20%28ERA%29%20based%20on%20measurements%20on%20the%20COST%20microplasma%20jet.%20In%20addition%2C%20a%20benchmark%20against%20two-photon%20absorption%20laser%20induced%20fluorescence%20measurements%20is%20performed.%20Both%20atomic%20oxygen%20densities%20and%20mean%20electron%20energies%20are%20in%20good%20agreement%20with%20the%20literature.%20Furthermore%2C%20SEA%20offers%20a%20number%20of%20advantages%20over%20known%20approaches.%20Firstly%2C%20the%20experimental%20complexity%20is%20significantly%20reduced%20by%20using%20time-integrated%20spectra%20instead%20of%20phase-resolved%20measurements%2C%20as%20used%20in%20the%20original%20ERA%20approach.%20Secondly%2C%20the%20precision%20of%20the%20electron%20energy%20measurement%20can%20be%20significantly%20improved%20by%20the%20use%20of%20the%20helium%20state.%20In%20addition%2C%20known%20uncertainties%20e.g.%20due%20to%20excitation%20of%20oxygen%20excited%20levels%20via%20metastable%20oxygen%20states%20can%20be%20reduced.%22%2C%22date%22%3A%222022-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac90e8%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac90e8%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-11-06T17%3A05%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22XNZUJ35E%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tennyson%20et%20al.%22%2C%22parsedDate%22%3A%222022-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETennyson%2C%20J.%2C%20Mohr%2C%20S.%2C%20Hanicinec%2C%20M.%2C%20Dzarasova%2C%20A.%2C%20Smith%2C%20C.%2C%20Waddington%2C%20S.%2C%20Liu%2C%20B.%2C%20Alves%2C%20L.%20L.%2C%20Bartschat%2C%20K.%2C%20Bogaerts%2C%20A.%2C%20Engelmann%2C%20S.%20U.%2C%20Gans%2C%20T.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Hamaguchi%2C%20S.%2C%20Hamilton%2C%20K.%20R.%2C%20Hill%2C%20C.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20Rauf%2C%20S.%2C%20van%20%26%23x2019%3Bt%20Veer%2C%20K.%2C%20%26amp%3B%20Zatsarinny%2C%20O.%20%282022%29.%20The%202021%20release%20of%20the%20Quantemol%20database%20%28QDB%29%20of%20plasma%20chemistries%20and%20reactions.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%289%29%2C%20095020.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac907e%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac907e%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DXNZUJ35E%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%202021%20release%20of%20the%20Quantemol%20database%20%28QDB%29%20of%20plasma%20chemistries%20and%20reactions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%22%2C%22lastName%22%3A%22Tennyson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Mohr%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Hanicinec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Dzarasova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carrick%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%22%2C%22lastName%22%3A%22Waddington%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bingqing%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lu%5Cu00eds%20L%22%2C%22lastName%22%3A%22Alves%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Klaus%22%2C%22lastName%22%3A%22Bartschat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Annemie%22%2C%22lastName%22%3A%22Bogaerts%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%20U%22%2C%22lastName%22%3A%22Engelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Satoshi%22%2C%22lastName%22%3A%22Hamaguchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kathryn%20R%22%2C%22lastName%22%3A%22Hamilton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Hill%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shahid%22%2C%22lastName%22%3A%22Rauf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%22%2C%22lastName%22%3A%22van%20%5Cu2019t%20Veer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oleg%22%2C%22lastName%22%3A%22Zatsarinny%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Quantemol%20database%20%28QDB%29%20provides%20cross%20sections%20and%20rates%20of%20processes%20important%20for%20plasma%20models%3B%20heavy%20particle%20collisions%20%28chemical%20reactions%29%20and%20electron%20collision%20processes%20are%20considered.%20The%20current%20version%20of%20QDB%20has%20data%20on%2028%5Cu00a0917%20processes%20between%202485%20distinct%20species%20plus%20data%20for%20surface%20processes.%20These%20data%20are%20available%20via%20a%20web%20interface%20or%20can%20be%20delivered%20directly%20to%20plasma%20models%20using%20an%20application%20program%20interface%3B%20data%20are%20available%20in%20formats%20suitable%20for%20direct%20input%20into%20a%20variety%20of%20popular%20plasma%20modeling%20codes%20including%20HPEM%2C%20COMSOL%2C%20ChemKIN%2C%20CFD-ACE%2B%2C%20and%20VisGlow.%20QDB%20provides%20ready%20assembled%20plasma%20chemistries%20plus%20the%20ability%20to%20build%20bespoke%20chemistries.%20The%20database%20also%20provides%20a%20Boltzmann%20solver%20for%20electron%20dynamics%20and%20a%20zero-dimensional%20model.%20Thesedevelopments%2C%20use%20cases%20involving%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20Ar%5C%2FNF%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20Ar%5C%2FNF%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20He%5C%2FH%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5C%2FO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20chemistries%2C%20and%20plans%20for%20the%20future%20are%20presented.%22%2C%22date%22%3A%222022-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac907e%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac907e%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-12-16T10%3A40%3A54Z%22%7D%7D%2C%7B%22key%22%3A%223GKBTI5B%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu010eurian%20et%20al.%22%2C%22parsedDate%22%3A%222022-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x10E%3Burian%2C%20J.%2C%20Hartmann%2C%20P.%2C%20Matej%26%23x10D%3B%26%23xED%3Bk%2C%20%26%23x160%3B.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282022%29.%20Experimental%20and%20simulation%20study%20of%20a%20capacitively%20coupled%20radiofrequency%20plasma%20with%20a%20structured%20electrode.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%289%29%2C%20095001.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac8449%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fac8449%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D3GKBTI5B%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Experimental%20and%20simulation%20study%20of%20a%20capacitively%20coupled%20radiofrequency%20plasma%20with%20a%20structured%20electrode%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e1n%22%2C%22lastName%22%3A%22%5Cu010eurian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu0160tefan%22%2C%22lastName%22%3A%22Matej%5Cu010d%5Cu00edk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22A%20low-pressure%20capacitively%20coupled%20radiofrequency%20%28RF%29%20helium%20discharge%20with%20a%20structured%20electrode%20is%20investigated%20experimentally%20and%20via%20kinetic%20simulations.%20In%20the%20experiment%2C%20phase%20resolved%20optical%20emission%20spectroscopy%20provides%20information%20about%20the%20excitation%20dynamics%20by%20high%20energy%20electrons%2C%20with%20high%20spatial%20and%20nanosecond%20temporal%20resolution%20within%20the%20RF%20%2813.56%20MHz%29%20period.%20The%20numerical%20studies%20are%20based%20on%20a%20newly%20developed%202d3v%20particle-in-cell%5C%2FMonte%20Carlo%20collisions%20code%20carried%20out%20on%20graphics%20processing%20units.%20The%20two%20approaches%20give%20consistent%20results%20for%20the%20penetration%20of%20the%20plasma%20into%20the%20trench%20situated%20in%20one%20of%20the%20electrodes%20and%20the%20particular%20electron%20dynamics%20resulting%20from%20the%20presence%20of%20the%20structured%20electrode.%20In%20addition%2C%20the%20fluxes%20of%20He%2B%20ions%20and%20vacuum%20ultraviolet%20photons%20incident%20on%20the%20different%20surfaces%20in%20and%20around%20the%20trench%20structure%20are%20studied.%20These%20are%20discussed%20with%20respect%20to%20the%20homogeneous%20treatment%20of%20complex%20structures%2C%20relevant%20for%20advanced%20surface%20modification%20and%20disinfection%20processes.%22%2C%22date%22%3A%222022-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fac8449%22%2C%22ISSN%22%3A%220963-0252%2C%201361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fac8449%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-11-06T17%3A04%3A45Z%22%7D%7D%2C%7B%22key%22%3A%2237879F8I%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fccke%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bcke%2C%20L.%2C%20Bodnar%2C%20A.%2C%20Friedrichs%2C%20N.%2C%20B%26%23xF6%3Bddecker%2C%20A.%2C%20Peters%2C%20N.%2C%20Ollegott%2C%20K.%2C%20Oberste-Beulmann%2C%20C.%2C%20Wirth%2C%20P.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Korolov%2C%20I.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Muhler%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282022%29.%20Optical%20absorption%20spectroscopy%20of%20reactive%20oxygen%20and%20nitrogen%20species%20in%20a%20surface%20dielectric%20barrier%20discharge.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E55%3C%5C%2Fi%3E%2821%29%2C%20215205.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D37879F8I%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20absorption%20spectroscopy%20of%20reactive%20oxygen%20and%20nitrogen%20species%20in%20a%20surface%20dielectric%20barrier%20discharge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arisa%22%2C%22lastName%22%3A%22Bodnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Friedrichs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%22%2C%22lastName%22%3A%22Ollegott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste-Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Wirth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20twin%20surface%20dielectric%20barrier%20discharge%20%28SDBD%29%20ignited%20in%20a%20dry%20synthetic%20air%20gas%20stream%20is%20studied%20regarding%20the%20formation%20of%20reactive%20oxygen%20and%20nitrogen%20species%20%28RONS%29%20and%20their%20impact%20on%20the%20conversion%20of%20admixed%20n-butane.%20The%20discharge%20is%20driven%20by%20a%20damped%20sinusoidal%20voltage%20waveform%20at%20peak-to-peak%20amplitudes%20of%208%20kVpp%5Cu201313%20kVpp%20and%20pulse%20repetition%20frequencies%20of%20250%20Hz%5Cu20134000%20Hz.%20Absolute%20densities%20of%20O3%2C%20NO2%2C%20NO3%2C%20as%20well%20as%20estimates%20of%20the%20sum%20of%20the%20densities%20of%20N2O4%20and%20N2O5%20are%20determined%20temporally%20resolved%20by%20means%20of%20optical%20absorption%20spectroscopy%20using%20a%20laser%20driven%20broadband%20light%20source%2C%20suitable%20interference%20filters%2C%20and%20a%20photodiode%20detector.%20The%20measured%20densities%20are%20acquired%20across%20the%20center%20of%20the%20reactor%20chamber%20as%20well%20as%20at%20the%20outlet%20of%20the%20chamber.%20The%20temporal%20and%20spatial%20evolution%20of%20the%20species%5Cu2019%20densities%20is%20correlated%20to%20the%20conversion%20of%20n-butane%20at%20concentrations%20of%2050%20ppm%20and%20400%20ppm%2C%20measured%20by%20means%20of%20flame%20ionization%20detectors.%20The%20n-butane%20is%20admixed%20either%20before%20or%20after%20the%20reactor%20chamber%2C%20in%20order%20to%20separate%20the%20impact%20of%20short-%20and%20long-lived%20reactive%20species%20on%20the%20conversion%20process.%20It%20is%20found%20that%2C%20despite%20the%20stationary%20conversion%20at%20the%20selected%20operating%20points%2C%20at%20higher%20voltages%20and%20repetition%20frequencies%20the%20densities%20of%20the%20measured%20species%20are%20not%20in%20steady%20state.%20Based%20on%20the%20produced%20results%20it%20is%20presumed%20that%20the%20presence%20of%20n-butane%20modifies%20the%20formation%20and%20consumption%20pathways%20of%20O3.%20At%20the%20same%20time%2C%20there%20is%20no%20significant%20impact%20on%20the%20formation%20of%20dinitrogen%20oxides%20%28N2O4%20and%20N2O5%29.%20Furthermore%2C%20a%20comparatively%20high%20conversion%20of%20n-butane%2C%20when%20admixed%20at%20the%20outlet%20of%20the%20reactor%20chamber%20is%20observed.%20These%20findings%20are%20discussed%20together%20with%20known%20rate%20coefficients%20for%20the%20reactions%20of%20n-butane%20with%20selected%20RONS.%22%2C%22date%22%3A%222022-05-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fac5661%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fac5661%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-03-01T13%3A26%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22STDG2YRK%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22B%5Cu00f6ddecker%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EB%26%23xF6%3Bddecker%2C%20A.%2C%20Bodnar%2C%20A.%2C%20Sch%26%23xFC%3Bcke%2C%20L.%2C%20Giesekus%2C%20J.%2C%20Wenselau%2C%20K.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Oppotsch%2C%20T.%2C%20Oberste-Beulmann%2C%20C.%2C%20Muhler%2C%20M.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282022%29.%20A%20scalable%20twin%20surface%20dielectric%20barrier%20discharge%20system%20for%20pollution%20remediation%20at%20high%20gas%20flow%20rates.%20%3Ci%3EReaction%20Chemistry%20%26amp%3B%20Engineering%3C%5C%2Fi%3E%2C%2010.1039.D2RE00167E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2RE00167E%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2RE00167E%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DSTDG2YRK%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20scalable%20twin%20surface%20dielectric%20barrier%20discharge%20system%20for%20pollution%20remediation%20at%20high%20gas%20flow%20rates%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22B%5Cu00f6ddecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arisa%22%2C%22lastName%22%3A%22Bodnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Giesekus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katja%22%2C%22lastName%22%3A%22Wenselau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T.%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%22%2C%22lastName%22%3A%22Oppotsch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Oberste-Beulmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22Investigation%20of%20conversion%20of%20volatile%20organic%20compounds%20by%20a%20scaled-up%20surface%20dielectric%20barrier%20discharge%20reactor%20designed%20for%20industrial%20applications.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%2C%20a%20modular%2C%20multi-electrode%20surface%20dielectric%20barrier%20discharge%20system%20for%20the%20decomposition%20of%20polluted%20air%20streams%20at%20high%20volumetric%20flows%2C%20necessary%20for%20industrial%20applications%2C%20is%20designed%20and%20constructed.%20The%20system%20is%20demonstrated%20for%20the%20decomposition%20of%20butoxyethanol%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-butane%20in%20ambient%20air%20flows%20of%20up%20to%20almost%20500%20slm%20%28standard%20litres%20per%20minute%29%20%28%5Cu2259%2030%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20h%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20at%20concentrations%20between%2050%20ppm%20and%201000%20ppm.%20With%20an%20energy%20density%20of%20%2878.3%20%5Cu00b1%203.6%29%20J%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%20maximum%20relative%20conversion%20of%20about%2027%25%20of%20butoxyethanol%20is%20achieved.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-Butane%20was%20used%20to%20enable%20comparison%20with%20previous%20studies.%20Here%20it%20could%20be%20demonstrated%20that%20the%20scaled-up%20source%20achieved%20higher%20conversion%20at%20lower%20energy%20densities%20in%20comparison%20to%20the%20original%20design%20used%20at%20lower%20volumetric%20flow%20rates.%20Additionally%2C%20the%20density%20of%20ozone%2C%20which%20is%20a%20toxic%20by-product%20of%20the%20overall%20process%2C%20was%20measured%20in%20the%20exhaust%20gas%20under%20different%20operating%20conditions%20and%20its%20degradation%20with%20activated%20carbon%20filters%20was%20studied.%20At%20an%20energy%20density%20of%2079.6%20J%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%20maximum%20ozone%20molecule%20flow%20of%20%289.02%20%5Cu00b1%200.19%29%20%5Cu00d7%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2018%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20measured%20which%20decreases%20with%20increasing%20energy%20density%2C%20because%20among%20other%20possible%20effects%20the%20rising%20temperature%20accelerates%20its%20decay.%20One%20of%20the%20activated%20carbon%20filters%20was%20able%20to%20reduce%20the%20concentration%20of%20toxic%20ozone%20by%20100%25%20under%20conditions%20where%20a%20preheated%20airstream%20is%20used.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD2RE00167E%22%2C%22ISSN%22%3A%222058-9883%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD2RE00167E%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-08-05T15%3A25%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22ZTPL9XGE%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brisset%20et%20al.%22%2C%22parsedDate%22%3A%222021-07-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBrisset%2C%20A.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Schr%26%23xF6%3Bter%2C%20S.%2C%20Niemi%2C%20K.%2C%20Booth%2C%20J.-P.%2C%20Gans%2C%20T.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Wagenaars%2C%20E.%20%282021%29.%20Chemical%20kinetics%20and%20density%20measurements%20of%20OH%20in%20an%20atmospheric%20pressure%20He%20%2B%20O%20%3Csub%3E2%3C%5C%2Fsub%3E%20%2B%20H%20%3Csub%3E2%3C%5C%2Fsub%3E%20O%20radiofrequency%20plasma.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E54%3C%5C%2Fi%3E%2828%29%2C%20285201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fabefec%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fabefec%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DZTPL9XGE%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Chemical%20kinetics%20and%20density%20measurements%20of%20OH%20in%20an%20atmospheric%20pressure%20He%20%2B%20O%20%3Csub%3E2%3C%5C%2Fsub%3E%20%2B%20H%20%3Csub%3E2%3C%5C%2Fsub%3E%20O%20radiofrequency%20plasma%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandra%22%2C%22lastName%22%3A%22Brisset%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kari%22%2C%22lastName%22%3A%22Niemi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Paul%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erik%22%2C%22lastName%22%3A%22Wagenaars%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-07-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fabefec%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fabefec%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22SNDNRK33%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hillebrand%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHillebrand%2C%20B.%2C%20Iglesias%2C%20E.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Bibinov%2C%20N.%2C%20Neugebauer%2C%20A.%2C%20Enderle%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282020%29.%20Determination%20of%20plasma%20parameters%20by%20spectral%20line%20broadening%20in%20an%20electrosurgical%20argon%20plasma.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2812%29%2C%20125011.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc411%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc411%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DSNDNRK33%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Determination%20of%20plasma%20parameters%20by%20spectral%20line%20broadening%20in%20an%20electrosurgical%20argon%20plasma%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bastian%22%2C%22lastName%22%3A%22Hillebrand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Iglesias%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Neugebauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Enderle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22An%20electrosurgical%20argon%20plasma%20with%20a%205%25%20admixture%20of%20molecular%20hydrogen%20is%20studied%20in%20order%20to%20investigate%20time%20averaged%20plasma%20parameters%20by%20optical%20emission%20spectroscopy%20%28OES%29.%20Electron%20densities%20in%20the%20range%20of%201015%5Cu20131016%20cm%5Cu22123%20are%20determined%20from%20the%20Stark%20broadening%20of%20the%20time%20averaged%20line%20profiles%20of%20the%20Balmer-%5Cu03b1%20and%20-%5Cu03b2%20emission%20lines%20of%20hydrogen.%20A%20two-profile%20fit%20corresponding%20to%20regions%20of%20different%20electron%20densities%20is%20found%20to%20provide%20a%20better%20representation%20of%20the%20line%20broadening%20than%20a%20single%20profile%20fit.%20This%20is%20consistent%20with%20time%20resolved%20ICCD%20imaging%2C%20acquired%20with%20150%20ns%20time%20resolution%2C%20that%20shows%20strong%20radial%20gradients%20in%20the%20plasma%20emission%20and%20the%20asymmetry%20produced%20by%20the%20discharge%20arrangement.%20Gas%20temperatures%20are%20determined%20using%20two%20different%20methods.%20Firstly%2C%20simulated%20spectra%20for%20different%20rotational%20temperatures%20are%20fitted%20to%20the%20measured%20N2%28C-B%2C%200-1%29%20emission%20band%20originating%20from%20ambient%20air%20diffusion%20into%20the%20argon%5C%2Fhydrogen%20gas%20flow.%20From%20the%20best%20fit%2C%20rotational%20temperatures%20between%201500%20K%20and%201800%20K%20are%20inferred.%20These%20measurements%20are%20in%20good%20agreement%20with%20those%20inferred%20by%20the%20second%20method%2C%20which%20is%20based%20on%20the%20collisional%20broadening%20of%20the%20emission%20lines%20of%20neutral%20argon%20at%20750%20nm%20and%20751%20nm.%20This%20latter%20method%20may%20be%20useful%20for%20the%20measurement%20of%20gas%20temperatures%20when%20the%20device%20is%20used%20inside%20hollow%20organs%20during%20endoscopic%20or%20laparoscopic%20interventions%2C%20where%20air%20mixing%20will%20be%20limited.%20Therefore%2C%20the%20results%20of%20this%20study%20are%20highly%20relevant%20to%20applications%20of%20these%20devices%2C%20e.g.%20for%20controlling%20tissue%20effects%20and%20the%20avoidance%20of%20excessive%20heating.%22%2C%22date%22%3A%222020-12-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabc411%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc411%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A30%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22GEBKSDGB%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Doyle%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDoyle%2C%20S.%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Boswell%2C%20R.%20W.%2C%20Charles%2C%20C.%2C%20%26amp%3B%20Dedrick%2C%20J.%20P.%20%282020%29.%20Decoupling%20ion%20energy%20and%20flux%20in%20intermediate%20pressure%20capacitively%20coupled%20plasmas%20via%20tailored%20voltage%20waveforms.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2812%29%2C%20124002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc82f%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc82f%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DGEBKSDGB%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Decoupling%20ion%20energy%20and%20flux%20in%20intermediate%20pressure%20capacitively%20coupled%20plasmas%20via%20tailored%20voltage%20waveforms%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rod%20W%22%2C%22lastName%22%3A%22Boswell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%22%2C%22lastName%22%3A%22Charles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22The%20discrete%20control%20of%20ion%20energy%20and%20flux%20is%20of%20increasing%20importance%20to%20industrially%20relevant%20plasma%20sources.%20The%20ion%20energy%20distribution%20functions%20%28IEDFs%29%20and%20net%20ion%20flux%20incident%20upon%20material%20surfaces%20in%20intermediate%20pressure%20%28%5Cu2248133%20Pa%2C%201%20Torr%29%20radio-frequency%20capacitively%20coupled%20plasmas%20%28rf%20CCPs%29%20are%20coupled%20to%20the%20spatio-temporal%20sheath%20dynamics%20and%20resulting%20phase-averaged%20sheath%20potential.%20For%20single%20frequency%20driven%20discharges%20this%20co-dependence%20of%20ion%20energy%20and%20flux%20on%20the%20sheath%20potential%20limits%20the%20range%20of%20accessible%20operating%20regimes.%20In%20this%20work%2C%20experimentally%20benchmarked%202D%20fluid%5C%2FMonte-Carlo%20simulations%20are%20employed%20to%20demonstrate%20quasi-independent%20control%20of%20the%20ion%20flux%20and%20IEDF%20incident%20upon%20plasma%20facing%20surfaces%20in%20a%20collisional%20%28%5Cu2248200%20Pa%2C%201.5%20Torr%20argon%29%20rf%20hollow%20cathode%20discharge%20driven%20by%20multi-harmonic%20%28n%202%29%20tailored%20voltage%20waveforms.%20The%20application%20of%20variable%20phase%20offset%20n%20%3D%205%20tailored%20voltage%20waveforms%20affords%20a%20significant%20degree%20of%20control%20over%20the%20ion%20flux%20%5Cu0393Ar%2B%20and%20mean%20ion%20energy%20%5Cu02c6Ar%2B%20%2C%20modulating%20each%20by%20factors%20of%202.9%20and%201.6%2C%20respectively%20as%20compared%20to%201.8%20and%201.6%2C%20achieved%20via%20n%20%3D%202%20dual-frequency%20voltage%20waveforms.%20The%20disparate%20modulations%20achieved%20employing%20n%20%3D%205%20tailored%20voltage%20waveforms%20demonstrate%20a%20significant%20degree%20of%20independent%20control%20over%20the%20mean%20ion%20energy%20and%20ion%20flux%20for%20collisional%20conditions%2C%20enabling%20access%20to%20a%20wider%20range%20of%20operational%20regimes.%20Maximising%20the%20extent%20to%20which%20ion%20energy%20and%20flux%20may%20be%20independently%20controlled%20enables%20improvements%20to%20plasma%20sources%20for%20technological%20applications%20such%20as%20plasma%20assisted%20material%20manufacture%20and%20spacecraft%20propulsion.%22%2C%22date%22%3A%222020-12-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabc82f%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabc82f%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A56Z%22%7D%7D%2C%7B%22key%22%3A%22PV8GXKCG%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fccke%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bcke%2C%20L.%2C%20Gembus%2C%20J.-L.%2C%20Peters%2C%20N.%2C%20Kogelheide%2C%20F.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Schulze%2C%20J.%2C%20Muhler%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282020%29.%20Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2811%29%2C%20114003.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DPV8GXKCG%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan-Luca%22%2C%22lastName%22%3A%22Gembus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Friederike%22%2C%22lastName%22%3A%22Kogelheide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20voltage%20and%20power%20controlled%20surface%20dielectric%20barrier%20discharge%20for%20the%20removal%20of%20volatile%20organic%20compounds%20%28VOCs%29%20from%20gas%20streams%20is%20studied%20by%20means%20of%20current%5Cu2013voltage%20measurements%2C%20flame%20ionization%20detectors%2C%20and%20gas%20chromatography%5Cu2013mass%20spectrometry%20%28GC%5Cu2013MS%29.%20The%20discharge%20is%20generated%20in%20a%20defined%20synthetic%20air%20gas%20stream%20at%20atmospheric%20pressure%20by%20application%20of%20a%20damped%20sinusoidal%20voltage%20waveform%20resulting%20from%20a%20resonant%20circuit.%20Multiple%20organic%20compounds%2C%20namely%20n-butane%2C%20butanol%2C%20isobutanol%2C%20ethyl%20acetate%2C%20diethyl%20ether%2C%20and%20butoxyethanol%2C%20are%20tested%20at%20concentrations%20of%2050%2C%20100%2C%20200%2C%20and%20400%20ppm%20%28parts%20per%20million%29%2C%20as%20well%20as%20peak-to-peak%20voltages%20of%208%20to%2013%20kVpp%20and%20pulse%20repetition%20frequencies%20of%20250%20to%204000%20Hz.%20The%20dissipated%20power%20within%20the%20system%20is%20calculated%20utilizing%20the%20measured%20voltage%20and%20current%20waveforms.%20The%20conversion%20and%20absolute%20degradation%20of%20the%20VOCs%20are%20determined%20by%20flame%20ionization%20detectors.%20An%20increasing%20concentration%20of%20VOCs%20is%20found%20to%20increase%20the%20dissipated%20power%20marginally%2C%20suggesting%20a%20higher%20conductivity%20and%20higher%20electron%20densities%20in%20the%20plasma.%20Of%20the%20applied%20VOCs%2C%20n-butane%20is%20found%20to%20be%20the%20most%20resistant%20to%20the%20plasma%20treatment%2C%20while%20higher%20concentrations%20consistently%20result%20in%20a%20lower%20conversion%20and%20a%20higher%20absolute%20degradation%20across%20all%20tested%20compounds.%20Corresponding%20amounts%20of%20converted%20molecules%20per%20expended%20joule%20are%20given%20as%20a%20comparable%20parameter%20by%20weighting%20the%20absolute%20degradation%20with%20the%20dissipated%20power.%20Finally%2C%20specific%20reaction%20products%20are%20determined%20by%20online%20GC%5Cu2013MS%2C%20further%20confirming%20carbon%20dioxide%20%28CO2%29%20as%20a%20major%20reaction%20product%2C%20alongside%20a%20variety%20of%20less%20prevalent%20side%20products%2C%20depending%20on%20the%20structure%20of%20the%20original%20compound.%20The%20findings%20of%20this%20study%20are%20intended%20to%20promote%20the%20development%20of%20energy%20efficient%20processes%20for%20the%20purification%20of%20gas%20streams%20in%20both%2C%20industry%20and%20consumer%20market.%20Potential%20applications%20of%20the%20presented%20technique%20could%20be%20found%20in%20car%20paint%20shops%2C%20chemical%20plants%2C%20hospital%20ventilation%20systems%2C%20or%20air%20purifiers%20for%20living%20space.%22%2C%22date%22%3A%222020-11-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A25%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22P88VEZU5%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schr%5Cu00f6ter%20et%20al.%22%2C%22parsedDate%22%3A%222020-10-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchr%26%23xF6%3Bter%2C%20S.%2C%20Bredin%2C%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20West%2C%20A.%2C%20Dedrick%2C%20J.%20P.%2C%20Wagenaars%2C%20E.%2C%20Niemi%2C%20K.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20O%26%23x2019%3BConnell%2C%20D.%20%282020%29.%20The%20formation%20of%20atomic%20oxygen%20and%20hydrogen%20in%20atmospheric%20pressure%20plasmas%20containing%20humidity%3A%20picosecond%20two-photon%20absorption%20laser%20induced%20fluorescence%20and%20numerical%20simulations.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2810%29%2C%20105001.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabab55%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabab55%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DP88VEZU5%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20formation%20of%20atomic%20oxygen%20and%20hydrogen%20in%20atmospheric%20pressure%20plasmas%20containing%20humidity%3A%20picosecond%20two-photon%20absorption%20laser%20induced%20fluorescence%20and%20numerical%20simulations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Bredin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22West%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P%22%2C%22lastName%22%3A%22Dedrick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erik%22%2C%22lastName%22%3A%22Wagenaars%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kari%22%2C%22lastName%22%3A%22Niemi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%5D%2C%22abstractNote%22%3A%22Atmospheric%20pressure%20plasmas%20are%20effective%20sources%20for%20reactive%20species%2C%20making%20them%20applicable%20for%20industrial%20and%20biomedical%20applications.%20We%20quantify%20ground-state%20densities%20of%20key%20species%2C%20atomic%20oxygen%20%28O%29%20and%20hydrogen%20%28H%29%2C%20produced%20from%20admixtures%20of%20water%20vapour%20%28up%20to%200.5%25%29%20to%20the%20helium%20feed%20gas%20in%20a%20radio-frequency-driven%20plasma%20at%20atmospheric%20pressure.%20Absolute%20density%20measurements%2C%20using%20two-photon%20absorption%20laser%20induced%20fluorescence%2C%20require%20accurate%20effective%20excited%20state%20lifetimes.%20For%20atmospheric%20pressure%20plasmas%2C%20picosecond%20resolution%20is%20needed%20due%20to%20the%20rapid%20collisional%20de-excitation%20of%20excited%20states.%20These%20absolute%20O%20and%20H%20density%20measurements%2C%20at%20the%20nozzle%20of%20the%20plasma%20jet%2C%20are%20used%20to%20benchmark%20a%20plug-flow%2C%200D%20chemical%20kinetics%20model%2C%20for%20varying%20humidity%20content%2C%20to%20further%20investigate%20the%20main%20formation%20pathways%20of%20O%20and%20H.%20It%20is%20found%20that%20impurities%20can%20play%20a%20crucial%20role%20for%20the%20production%20of%20O%20at%20small%20molecular%20admixtures.%20Hence%2C%20for%20controllable%20reactive%20species%20production%2C%20purposely%20admixed%20molecules%20to%20the%20feed%20gas%20is%20recommended%2C%20as%20opposed%20to%20relying%20on%20ambient%20molecules.%20The%20controlled%20humidity%20content%20was%20also%20identified%20as%20an%20effective%20tailoring%20mechanism%20for%20the%20O%5C%2FH%20ratio.%22%2C%22date%22%3A%222020-10-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabab55%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabab55%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A33Z%22%7D%7D%2C%7B%22key%22%3A%225Z59ZSDE%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kogelheide%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKogelheide%2C%20F.%2C%20Voigt%2C%20F.%2C%20Hillebrand%2C%20B.%2C%20Moeller%2C%20R.%2C%20Fuchs%2C%20F.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Awakowicz%2C%20P.%2C%20Stapelmann%2C%20K.%2C%20%26amp%3B%20Fiebrandt%2C%20M.%20%282020%29.%20The%20role%20of%20humidity%20and%20UV-C%20emission%20in%20the%20inactivation%20of%20%3Ci%3EB.%20subtilis%3C%5C%2Fi%3E%20spores%20during%20atmospheric-pressure%20dielectric%20barrier%20discharge%20treatment.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E53%3C%5C%2Fi%3E%2829%29%2C%20295201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fab77cc%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fab77cc%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D5Z59ZSDE%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20role%20of%20humidity%20and%20UV-C%20emission%20in%20the%20inactivation%20of%20%3Ci%3EB.%20subtilis%3C%5C%2Fi%3E%20spores%20during%20atmospheric-pressure%20dielectric%20barrier%20discharge%20treatment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Friederike%22%2C%22lastName%22%3A%22Kogelheide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Farina%22%2C%22lastName%22%3A%22Voigt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bastian%22%2C%22lastName%22%3A%22Hillebrand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralf%22%2C%22lastName%22%3A%22Moeller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Fuchs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katharina%22%2C%22lastName%22%3A%22Stapelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcel%22%2C%22lastName%22%3A%22Fiebrandt%22%7D%5D%2C%22abstractNote%22%3A%22Experiments%20are%20performed%20to%20assess%20the%20inactivation%20of%20Bacillus%20subtilis%20spores%20using%20a%20non-thermal%20atmospheric-pressure%20dielectric%20barrier%20discharge.%20The%20plasma%20source%20used%20in%20this%20study%20is%20mounted%20inside%20a%20vacuum%20vessel%20and%20operated%20in%20controlled%20gas%20mixtures.%20In%20this%20context%2C%20spore%20inactivation%20is%20measured%20under%20varying%20nitrogen%5C%2Foxygen%20and%20humidity%20content%20and%20compared%20to%20spore%20inactivation%20using%20ambient%20air.%20Operating%20the%20dielectric%20barrier%20discharge%20in%20a%20sealed%20vessel%20offers%20the%20ability%20to%20distinguish%20between%20possible%20spore%20inactivation%20mechanisms%20since%20different%20process%20gas%20mixtures%20lead%20to%20the%20formation%20of%20distinct%20reactive%20species.%20The%20UV%20irradiance%20and%20the%20ozone%20density%20within%20the%20plasma%20volume%20are%20determined%20applying%20spectroscopic%20diagnostics%20with%20neither%20found%20to%20fully%20correlate%20with%20spore%20inactivation.%20It%20is%20found%20that%20spore%20inactivation%20is%20most%20strongly%20correlated%20with%20the%20humidity%20content%20in%20the%20feed%20gas%2C%20implying%20that%20reactive%20species%20formed%2C%20either%20directly%20or%20indirectly%2C%20from%20water%20molecules%20are%20strong%20mediators%20of%20spore%20inactivation.%22%2C%22date%22%3A%222020-07-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fab77cc%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fab77cc%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A31%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22ZMEMJLQ3%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Doyle%20et%20al.%22%2C%22parsedDate%22%3A%222019-03-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDoyle%2C%20S.%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Boswell%2C%20R.%20W.%2C%20Charles%2C%20C.%2C%20%26amp%3B%20Dedrick%2C%20J.%20P.%20%282019%29.%20Control%20of%20electron%2C%20ion%20and%20neutral%20heating%20in%20a%20radio-frequency%20electrothermal%20microthruster%20via%20dual-frequency%20voltage%20waveforms.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E28%3C%5C%2Fi%3E%283%29%2C%20035019.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab0984%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fab0984%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DZMEMJLQ3%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Control%20of%20electron%2C%20ion%20and%20neutral%20heating%20in%20a%20radio-frequency%20electrothermal%20microthruster%20via%20dual-frequency%20voltage%20waveforms%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rod%20W%22%2C%22lastName%22%3A%22Boswell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%22%2C%22lastName%22%3A%22Charles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22The%20development%20of%20low%20power%20micro-propulsion%20sources%20is%20of%20recent%20interest%20for%20application%20on%20miniature%20satellite%20platforms.%20Radio-frequency%5Cuf0a0%28rf%29%20plasma%20electrothermal%20microthrusters%20can%20operate%20without%20a%20space-charge%20neutralizer%20and%20provide%20increased%20control%20of%20spatiotemporal%20power%20deposition.%20Further%20understanding%20of%20how%20the%20phase-resolved%20rf%20plasma%20heating%20mechanisms%20affect%20the%20phase-averaged%20bulk%20plasma%20properties%2C%20e.g.%20neutral%20gas%20temperature%2C%20could%20allow%20for%20in-%5Cufb02ight%20tailoring%20of%20plasma%20thrusters.%20In%20this%20work%2C%20experimentally%20validated%20twodimensional%20%5Cufb02uid-kinetic%20simulations%20were%20employed%20to%20study%20the%20spatially%20resolved%20electron%20and%20ion%20power%20deposition%20and%20neutral%20gas%20heating%20in%20a%20dual-frequency%20rf%20electrothermal%20microthruster%20operating%20at%201.5%5Cuf0a0Torr%20plenum%20pressure%20in%20argon.%20Experimental%20validation%20was%20performed%20through%20a%20comparison%20of%20the%20measured%20and%20simulated%20phase%20resolved%20Ar%282p1%29%20excitation%20rates%2C%20showing%20close%20agreement.%20Two%20types%20of%20dual-frequency%20voltage%20waveforms%20were%20investigated%2C%20and%20comprise%20the%20combination%20of%20a%2013.56%20MHz%20voltage%20waveform%20with%2027.12%20MHz%20and%2040.68%20MHz%20waveforms%2C%20respectively.%20Varying%20the%20phase%20offset%20of%20the%20higher%20harmonic%20relative%20to%20the%20fundamental%2013.56%5Cuf0a0MHz%20voltage%20waveform%20was%20found%20to%20modulate%20the%20dc%20self-bias%20voltage%20by%2011%25%20and%203%25%20of%20the%20maximum%20applied%20peak-to-peak%20voltage%2C%20respectively.%20The%2013.56%5Cuf0a0MHz%2C%2027.12%5Cuf0a0MHz%20dual-frequency%20voltage%20waveform%20provided%20the%20highest%20degree%20of%20control%2C%20where%20the%20fraction%20of%20total%20rf%20power%20deposited%20into%20Ar%2B%20ions%20was%20found%20to%20vary%20from%2057%25%20to%2077%25%2C%20modulating%20the%20on-axis%20neutral%20gas%20temperature%20by%2035%25.%20This%20control%20is%20attributed%20to%20the%20variation%20in%20the%20fraction%20of%20the%20rf%20phase%20cycle%20for%20which%20the%20sheath%20is%20collapsed%2C%20altering%20the%20phase-averaged%20electric%20%5Cufb01eld%20strength%20adjacent%20to%20the%20radial%20wall.%20The%20application%20of%20dual-frequency%20waveforms%20provides%20the%20ability%20to%20optimize%20the%20particle%20heating%20mechanisms%20with%20application%20to%20electrothermal%20propulsion.%22%2C%22date%22%3A%222019-03-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fab0984%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fab0984%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22B62ZL8ZN%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Gibson%20et%20al.%22%2C%22parsedDate%22%3A%222019-01-07%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Donk%26%23xF3%3B%2C%20Z.%2C%20Alelyani%2C%20L.%2C%20Bischoff%2C%20L.%2C%20H%26%23xFC%3Bbner%2C%20G.%2C%20Bredin%2C%20J.%2C%20Doyle%2C%20S.%2C%20Korolov%2C%20I.%2C%20Niemi%2C%20K.%2C%20Mussenbrock%2C%20T.%2C%20Hartmann%2C%20P.%2C%20Dedrick%2C%20J.%20P.%2C%20Schulze%2C%20J.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20O%26%23x2019%3BConnell%2C%20D.%20%282019%29.%20Disrupting%20the%20spatio-temporal%20symmetry%20of%20the%20electron%20dynamics%20in%20atmospheric%20pressure%20plasmas%20by%20voltage%20waveform%20tailoring.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E28%3C%5C%2Fi%3E%281%29%2C%2001LT01.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faaf535%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faaf535%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DB62ZL8ZN%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Disrupting%20the%20spatio-temporal%20symmetry%20of%20the%20electron%20dynamics%20in%20atmospheric%20pressure%20plasmas%20by%20voltage%20waveform%20tailoring%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Layla%22%2C%22lastName%22%3A%22Alelyani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lena%22%2C%22lastName%22%3A%22Bischoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerrit%22%2C%22lastName%22%3A%22H%5Cu00fcbner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Bredin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ihor%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kari%22%2C%22lastName%22%3A%22Niemi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Mussenbrock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P%22%2C%22lastName%22%3A%22Dedrick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%5D%2C%22abstractNote%22%3A%22Single%20frequency%2C%20geometrically%20symmetric%20Radio-Frequency%20%28RF%29%20driven%20atmospheric%20pressure%20plasmas%20exhibit%20temporally%20and%20spatially%20symmetric%20patterns%20of%20electron%20heating%2C%20and%20consequently%2C%20charged%20particle%20densities%20and%20%5Cufb02uxes.%20Using%20a%20combination%20of%20phase-resolved%20optical%20emission%20spectroscopy%20and%20kinetic%20plasma%20simulations%2C%20we%20demonstrate%20that%20tailored%20voltage%20waveforms%20consisting%20of%20multiple%20RF%20harmonics%20induce%20targeted%20disruption%20of%20these%20symmetries.%20This%20con%5Cufb01nes%20the%20electron%20heating%20to%20small%20regions%20of%20time%20and%20space%20and%20enables%20the%20electron%20energy%20distribution%20function%20to%20be%20tailored.%22%2C%22date%22%3A%222019-01-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faaf535%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faaf535%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T07%3A12%3A35Z%22%7D%7D%2C%7B%22key%22%3A%2253IP9UUL%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Doyle%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDoyle%2C%20S.%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Boswell%2C%20R.%20W.%2C%20Charles%2C%20C.%2C%20%26amp%3B%20Dedrick%2C%20J.%20P.%20%282019%29.%20Inducing%20locally%20structured%20ion%20energy%20distributions%20in%20intermediate-pressure%20plasmas.%20%3Ci%3EPhysics%20of%20Plasmas%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%287%29%2C%20073519.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5111401%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5111401%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D53IP9UUL%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Inducing%20locally%20structured%20ion%20energy%20distributions%20in%20intermediate-pressure%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J.%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rod%20W.%22%2C%22lastName%22%3A%22Boswell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%22%2C%22lastName%22%3A%22Charles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20P.%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22Ion%20energy%20distribution%20functions%20%28IEDFs%29%20incident%20upon%20material%20surfaces%20in%20radio%20frequency%20%28rf%29%20capacitively%20coupled%20plasmas%20are%20coupled%20to%20spatial%20and%20temporal%20sheath%20dynamics.%20Tailoring%20the%20ion%20energy%20distribution%20function%20within%20intermediate-pressure%20plasmas%20%28%25133%20Pa%2C%201%20Torr%29%2C%20which%20%5Cufb01nd%20application%20in%20surface%20modi%5Cufb01cation%20and%20aerospace%20industries%2C%20is%20challenging%20due%20to%20the%20collisional%20conditions.%20In%20this%20work%2C%20experimentally%20benchmarked%202D%20%5Cufb02uid%5C%2FMonte-Carlo%20simulations%20are%20employed%20to%20demonstrate%20the%20production%20of%20structured%20IEDFs%20in%20a%20collisional%20%28200%20Pa%201.5%20Torr%20argon%29%20rf%20hollow%20cathode%20discharge.%20The%20formation%20of%20structures%20within%20the%20IEDFs%20is%20explained%20by%20an%20increase%20in%20the%20Ar%5Cu00fe%20ion-neutral%20mean-free-path%20and%20a%20simultaneous%20decrease%20in%20the%20phase-averaged%20sheath%20extension%20as%20the%20rf%20voltage%20frequency%20increases%20over%2013.56%5Cu2013108.48%20MHz%20for%20a%20constant%20rf%20voltage%20amplitude%20%28increasing%20plasma%20power%29%20and%20gas%20%5Cufb02ow%20rate.%20Two%20distinct%20transitions%20in%20the%20shape%20of%20the%20IEDF%20are%20observed%20at%20450%20V%2C%20corresponding%20to%20the%20formation%20of%20%5Cu201cmid-energy%5Cu201d%20%2860%5Cu2013180%20eV%29%20structures%20between%2040.68%20and%2054.24%20MHz%20and%20additional%20%5Cu201chigh%20energy%5Cu201d%20%28%20%5Cu057f%20180%20eV%29%20structures%20between%2081.36%20and%2094.92%20MHz%2C%20with%20the%20structures%20within%20each%20region%20displaying%20a%20distinct%20sensitivity%20to%20the%20applied%20voltage%20amplitude.%20Transitions%20between%20these%20energy%20ranges%20occurred%20at%20lower%20applied%20voltages%20for%20increased%20applied%20voltage%20frequencies%2C%20providing%20increased%20control%20of%20the%20mean%20and%20modal%20ion%20energy%20over%20a%20wider%20voltage%20range.%20The%20capabitlity%20to%20extend%20the%20range%20of%20access%20to%20an%20operational%20regime%2C%20where%20the%20structured%20IEDFs%20are%20observed%2C%20is%20desirable%20for%20applications%20that%20require%20control%20of%20the%20ion-bombardment%20energy%20under%20collisional%20plasma%20conditions.%22%2C%22date%22%3A%2207%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5111401%22%2C%22ISSN%22%3A%221070-664X%2C%201089-7674%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Faip.scitation.org%5C%2Fdoi%5C%2F10.1063%5C%2F1.5111401%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22AAG55TED%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hamilton%20et%20al.%22%2C%22parsedDate%22%3A%222018-09-19%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHamilton%2C%20J.%20R.%2C%20Tennyson%2C%20J.%2C%20Booth%2C%20J.-P.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%20%282018%29.%20Calculated%20electron%20impact%20dissociation%20cross%20sections%20for%20molecular%20chlorine%20%28Cl%20%3Csub%3E2%3C%5C%2Fsub%3E%20%29.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E27%3C%5C%2Fi%3E%289%29%2C%20095008.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faada32%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faada32%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DAAG55TED%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Calculated%20electron%20impact%20dissociation%20cross%20sections%20for%20molecular%20chlorine%20%28Cl%20%3Csub%3E2%3C%5C%2Fsub%3E%20%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R%22%2C%22lastName%22%3A%22Hamilton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%22%2C%22lastName%22%3A%22Tennyson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Paul%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%5D%2C%22abstractNote%22%3A%22Electron%20impact%20dissociation%20of%20Cl2%20is%20a%20key%20process%20for%20the%20formation%20of%20Cl%20atoms%20in%20lowtemperature%20plasmas%20used%20for%20industrial%20etching%20processes.%20Despite%20this%2C%20relatively%20little%20cross%20section%20data%20exist%20for%20this%20process.%20In%20this%20work%2C%20electron%20impact%20dissociation%20cross%20sections%20were%20calculated%20for%20Cl2%20molecules%20using%20the%20UK%20molecular%20R-matrix%20code%20in%20the%20low%20electron%20energy%20range%20and%20extended%20to%20high%20energies%20using%20a%20scaling%20depending%20on%20the%20speci%5Cufb01c%20nature%20of%20each%20transition.%20Our%20results%20are%20compared%20with%20both%20previous%20calculations%20and%20with%20experimental%20measurements%2C%20and%20the%20similarities%20and%20differences%20are%20discussed.%20In%20addition%2C%20the%20rate%20coef%5Cufb01cients%20for%20electron%20impact%20dissociation%20of%20Cl2%20are%20calculated%20by%20integrating%20the%20cross%20sections%20derived%20in%20this%20%28and%20previous%29%20work%2C%20with%20electron%20energy%20distribution%20functions%20representative%20of%20those%20normally%20found%20in%20low-temperature%20plasmas%20used%20in%20industry.%20Depending%20on%20the%20shape%20and%20effective%20temperature%20of%20the%20distribution%20function%2C%20signi%5Cufb01cant%20differences%20arise%20between%20the%20rate%20coef%5Cufb01cients%20calculated%20from%20our%20cross%20sections%20and%20those%20calculated%20using%20previous%20data.%20Deviations%20between%20the%20two%20sets%20of%20rate%20coef%5Cufb01cients%20are%20particularly%20pronounced%20at%20the%20low%20electron%20temperatures%20typical%20of%20electron%20beam%20and%20remote%20plasma%20sources%20of%20interest%20for%20atomic%20layer%20etching%20and%20deposition.%20These%20differences%20are%20principally%20caused%20by%20the%20higher%20energy%20resolution%20in%20the%20near-threshold%20region%20in%20this%20work%2C%20emphasising%20the%20importance%20of%20accurate%2C%20high-resolution%20cross%20sections%20in%20this%20energy%20range.%22%2C%22date%22%3A%222018-09-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faada32%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faada32%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A16Z%22%7D%7D%2C%7B%22key%22%3A%22UUNR6UBM%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Doyle%20et%20al.%22%2C%22parsedDate%22%3A%222018-08-30%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDoyle%2C%20S.%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Flatt%2C%20J.%2C%20Ho%2C%20T.%20S.%2C%20Boswell%2C%20R.%20W.%2C%20Charles%2C%20C.%2C%20Tian%2C%20P.%2C%20Kushner%2C%20M.%20J.%2C%20%26amp%3B%20Dedrick%2C%20J.%20%282018%29.%20Spatio-temporal%20plasma%20heating%20mechanisms%20in%20a%20radio%20frequency%20electrothermal%20microthruster.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E27%3C%5C%2Fi%3E%288%29%2C%20085011.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faad79a%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faad79a%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DUUNR6UBM%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatio-temporal%20plasma%20heating%20mechanisms%20in%20a%20radio%20frequency%20electrothermal%20microthruster%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%22%2C%22lastName%22%3A%22Flatt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Teck%20Seng%22%2C%22lastName%22%3A%22Ho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rod%20W%22%2C%22lastName%22%3A%22Boswell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%22%2C%22lastName%22%3A%22Charles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peng%22%2C%22lastName%22%3A%22Tian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22Low-power%20micro-propulsion%20sources%20are%20currently%20being%20developed%20for%20a%20variety%20of%20space%20missions.%20Electrothermal%20plasma%20thrusters%20are%20of%20speci%5Cufb01c%20interest%20since%20they%20enable%20spatial%20control%20of%20the%20power%20deposition%20to%20the%20propellant%20gas.%20Understanding%20the%20mechanisms%20whereby%20electrical%20power%20is%20coupled%20to%20the%20propellant%20will%20allow%20for%20optimization%20of%20the%20heating%20and%20fuel%20ef%5Cufb01ciencies%20of%20electrothermal%20sources.%20Previous%20studies%20of%20radio%20frequency%20%28RF%29%20plasmas%20have%20shown%20a%20dependence%20of%20the%20gas%20and%20electron%20heating%20mechanisms%20on%20the%20local%20collisionality.%20This%20is%20of%20particular%20importance%20to%20thrusters%20due%20to%20the%20large%20pressure%20gradients%20that%20exist%20between%20the%20inlet%20and%20outlet%20when%20expanding%20into%20vacuum.%20In%20this%20work%2C%20phase-resolved%20optical%20emission%20spectroscopy%20and%20numerical%20simulations%20were%20employed%20to%20study%20plasma%20heating%20in%20an%20asymmetric%20RF%20%2813.56%20MHz%29%20electrothermal%20microthruster%20operating%20in%20argon%20between%20186%5Cu2013226%5Cuf0a0Pa%20%281.4%5Cu20131.7%20Torr%29%20plenum%20pressure%2C%20and%20between%20130%5Cu2013450%5Cuf0a0V%20%280.2%5Cu20135%20W%29.%20Three%20distinct%20peaks%20in%20the%20phase-resolved%20Ar%282p1%29%20electron%20impact%20excitation%20rate%20were%20observed%2C%20arising%20from%20sheath%20collapse%20heating%2C%20sheath%20expansion%20heating%2C%20and%20heating%20via%20secondary%20electron%20collisions.%20These%20experimental%20%5Cufb01ndings%20were%20corroborated%20with%20the%20results%20of%20two-dimensional%20%5Cufb02uid%5C%2FMonte%20Carlo%20simulations%20performed%20using%20the%20Hybrid%20Plasma%20Equipment%20Model%20%28HPEM%29.%20The%20in%5Cufb02uence%20of%20each%20mechanism%20with%20respect%20to%20the%20position%20within%20the%20plasma%20source%20during%20an%20%5Cu03b1-%5Cu03b3%20mode%20transition%2C%20where%20plasma%20heating%20is%20driven%20via%20bulk%20and%20sheath%20heating%2C%20respectively%2C%20was%20investigated.%20Sheath%20dynamics%20were%20found%20to%20dictate%20the%20electron%20heating%20at%20the%20inlet%20and%20outlet%2C%20this%20is%20distinct%20from%20the%20center%20of%20the%20thruster%20where%20interactions%20of%20secondary%20electrons%20were%20found%20to%20be%20the%20dominant%20electron%20heating%20mechanism.%20Optimization%20of%20the%20heating%20mechanisms%20that%20contribute%20to%20the%20effective%20exhaust%20temperature%20will%20directly%20bene%5Cufb01t%20electrothermal%20thrusters%20used%20on%20miniaturized%20satellite%20platforms.%22%2C%22date%22%3A%222018-08-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faad79a%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faad79a%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22UDGVYLKW%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A7499565%2C%22username%22%3A%22manuel.schroeder.rub%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fmanuel.schroeder.rub%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Donk%5Cu00f3%20et%20al.%22%2C%22parsedDate%22%3A%222018-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDonk%26%23xF3%3B%2C%20Z.%2C%20Derzsi%2C%20A.%2C%20Korolov%2C%20I.%2C%20Hartmann%2C%20P.%2C%20Brandt%2C%20S.%2C%20Schulze%2C%20J.%2C%20Berger%2C%20B.%2C%20Koepke%2C%20M.%2C%20Bruneau%2C%20B.%2C%20Johnson%2C%20E.%2C%20Lafleur%2C%20T.%2C%20Booth%2C%20J.-P.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Gans%2C%20T.%20%282018%29.%20Experimental%20benchmark%20of%20kinetic%20simulations%20of%20capacitively%20coupled%20plasmas%20in%20molecular%20gases.%20%3Ci%3EPlasma%20Physics%20and%20Controlled%20Fusion%3C%5C%2Fi%3E%2C%20%3Ci%3E60%3C%5C%2Fi%3E%281%29%2C%20014010.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8378%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8378%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DUDGVYLKW%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Experimental%20benchmark%20of%20kinetic%20simulations%20of%20capacitively%20coupled%20plasmas%20in%20molecular%20gases%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%22%2C%22lastName%22%3A%22Korolov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Hartmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Brandt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%22%2C%22lastName%22%3A%22Berger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Koepke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%22%2C%22lastName%22%3A%22Bruneau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J-P%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22We%20discuss%20the%20origin%20of%20uncertainties%20in%20the%20results%20of%20numerical%20simulations%20of%20low-temperature%20plasma%20sources%2C%20focusing%20on%20capacitively%20coupled%20plasmas.%20These%20sources%20can%20be%20operated%20in%20various%20gases%5C%2Fgas%20mixtures%2C%20over%20a%20wide%20domain%20of%20excitation%20frequency%2C%20voltage%2C%20and%20gas%20pressure.%20At%20low%20pressures%2C%20the%20non-equilibrium%20character%20of%20the%20charged%20particle%20transport%20prevails%20and%20particle-based%20simulations%20become%20the%20primary%20tools%20for%20their%20numerical%20description.%20The%20particle-in-cell%20method%2C%20complemented%20with%20Monte%20Carlo%20type%20description%20of%20collision%20processes%2C%20is%20a%20well-established%20approach%20for%20this%20purpose.%20Codes%20based%20on%20this%20technique%20have%20been%20developed%20by%20several%20authors%5C%2Fgroups%2C%20and%20have%20been%20benchmarked%20with%20each%20other%20in%20some%20cases.%20Such%20benchmarking%20demonstrates%20the%20correctness%20of%20the%20codes%2C%20but%20the%20underlying%20physical%20model%20remains%20unvalidated.%20This%20is%20a%20key%20point%2C%20as%20this%20model%20should%20ideally%20account%20for%20all%20important%20plasma%20chemical%20reactions%20as%20well%20as%20for%20the%20plasma-surface%20interaction%20via%20including%20speci%5Cufb01c%20surface%20reaction%20coef%5Cufb01cients%20%28electron%20yields%2C%20sticking%20coef%5Cufb01cients%2C%20etc%29.%20In%20order%20to%20test%20the%20models%20rigorously%2C%20comparison%20with%20experimental%20%5Cu2018benchmark%20data%5Cu2019%20is%20necessary.%20Examples%20will%20be%20given%20regarding%20the%20studies%20of%20electron%20power%20absorption%20modes%20in%20O2%2C%20and%20CF4%5Cu2013Ar%20discharges%2C%20as%20well%20as%20on%20the%20effect%20of%20modi%5Cufb01cations%20of%20the%20parameters%20of%20certain%20elementary%20processes%20on%20the%20computed%20discharge%20characteristics%20in%20O2%20capacitively%20coupled%20plasmas.%22%2C%22date%22%3A%222018-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6587%5C%2Faa8378%22%2C%22ISSN%22%3A%220741-3335%2C%201361-6587%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8378%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222022-02-08T10%3A38%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22RM7XB3Q3%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schr%5Cu00f6ter%20et%20al.%22%2C%22parsedDate%22%3A%222018-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchr%26%23xF6%3Bter%2C%20S.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Kushner%2C%20M.%20J.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20O%26%23x2019%3BConnell%2C%20D.%20%282018%29.%20Numerical%20study%20of%20the%20influence%20of%20surface%20reaction%20probabilities%20on%20reactive%20species%20in%20an%20rf%20atmospheric%20pressure%20plasma%20containing%20humidity.%20%3Ci%3EPlasma%20Physics%20and%20Controlled%20Fusion%3C%5C%2Fi%3E%2C%20%3Ci%3E60%3C%5C%2Fi%3E%281%29%2C%20014035.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8fe9%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8fe9%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DRM7XB3Q3%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Numerical%20study%20of%20the%20influence%20of%20surface%20reaction%20probabilities%20on%20reactive%20species%20in%20an%20rf%20atmospheric%20pressure%20plasma%20containing%20humidity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%5D%2C%22abstractNote%22%3A%22The%20quanti%5Cufb01cation%20and%20control%20of%20reactive%20species%20%28RS%29%20in%20atmospheric%20pressure%20plasmas%20%28APPs%29%20is%20of%20great%20interest%20for%20their%20technological%20applications%2C%20in%20particular%20in%20biomedicine.%20Of%20key%20importance%20in%20simulating%20the%20densities%20of%20these%20species%20are%20fundamental%20data%20on%20their%20production%20and%20destruction.%20In%20particular%2C%20data%20concerning%20particle-surface%20reaction%20probabilities%20in%20APPs%20are%20scarce%2C%20with%20most%20of%20these%20probabilities%20measured%20in%20low-pressure%20systems.%20In%20this%20work%2C%20the%20role%20of%20surface%20reaction%20probabilities%2C%20%5Cu03b3%2C%20of%20reactive%20neutral%20species%20%28H%2C%20O%20and%20OH%29%20on%20neutral%20particle%20densities%20in%20a%20He%5Cu2013H2O%5Cuf0a0%20radio-frequency%20micro%20APP%20jet%20%28COST-mAPPJ%29%20are%20investigated%20using%20a%20global%20model.%20It%20is%20found%20that%20the%20choice%20of%20%5Cu03b3%2C%20particularly%20for%20low-mass%20species%20having%20large%20diffusivities%2C%20such%20as%20H%2C%20can%20change%20computed%20species%20densities%20signi%5Cufb01cantly.%20The%20importance%20of%20%5Cu03b3%20even%20at%20elevated%20pressures%20offers%20potential%20for%20tailoring%20the%20RS%20composition%20of%20atmospheric%20pressure%20microplasmas%20by%20choosing%20different%20wall%20materials%20or%20plasma%20geometries.%22%2C%22date%22%3A%222018-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6587%5C%2Faa8fe9%22%2C%22ISSN%22%3A%220741-3335%2C%201361-6587%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6587%5C%2Faa8fe9%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22ARGELKA7%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schr%5Cu00f6ter%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchr%26%23xF6%3Bter%2C%20S.%2C%20Wijaikhum%2C%20A.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20West%2C%20A.%2C%20Davies%2C%20H.%20L.%2C%20Minesi%2C%20N.%2C%20Dedrick%2C%20J.%2C%20Wagenaars%2C%20E.%2C%20de%20Oliveira%2C%20N.%2C%20Nahon%2C%20L.%2C%20Kushner%2C%20M.%20J.%2C%20Booth%2C%20J.-P.%2C%20Niemi%2C%20K.%2C%20Gans%2C%20T.%2C%20%26amp%3B%20O%26%23x2019%3BConnell%2C%20D.%20%282018%29.%20Chemical%20kinetics%20in%20an%20atmospheric%20pressure%20helium%20plasma%20containing%20humidity.%20%3Ci%3EPhysical%20Chemistry%20Chemical%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E20%3C%5C%2Fi%3E%2837%29%2C%2024263%26%23x2013%3B24286.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FC8CP02473A%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FC8CP02473A%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DARGELKA7%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Chemical%20kinetics%20in%20an%20atmospheric%20pressure%20helium%20plasma%20containing%20humidity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Apiwat%22%2C%22lastName%22%3A%22Wijaikhum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22West%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helen%20L.%22%2C%22lastName%22%3A%22Davies%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Minesi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Dedrick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erik%22%2C%22lastName%22%3A%22Wagenaars%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nelson%22%2C%22lastName%22%3A%22de%20Oliveira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Nahon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J.%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Paul%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kari%22%2C%22lastName%22%3A%22Niemi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%27Connell%22%7D%5D%2C%22abstractNote%22%3A%22Investigating%20the%20formation%20and%20kinetics%20of%20O%20and%20OH%20in%20a%20He%5Cu2013H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20plasma%20jet%20using%20absorption%20spectroscopy%20and%200D%20modelling.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20pressure%20plasmas%20are%20sources%20of%20biologically%20active%20oxygen%20and%20nitrogen%20species%2C%20which%20makes%20them%20potentially%20suitable%20for%20the%20use%20as%20biomedical%20devices.%20Here%2C%20experiments%20and%20simulations%20are%20combined%20to%20investigate%20the%20formation%20of%20the%20key%20reactive%20oxygen%20species%2C%20atomic%20oxygen%20%28O%29%20and%20hydroxyl%20radicals%20%28OH%29%2C%20in%20a%20radio-frequency%20driven%20atmospheric%20pressure%20plasma%20jet%20operated%20in%20humidified%20helium.%20Vacuum%20ultra-violet%20high-resolution%20Fourier-transform%20absorption%20spectroscopy%20and%20ultra-violet%20broad-band%20absorption%20spectroscopy%20are%20used%20to%20measure%20absolute%20densities%20of%20O%20and%20OH.%20These%20densities%20increase%20with%20increasing%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20content%20in%20the%20feed%20gas%2C%20and%20approach%20saturation%20values%20at%20higher%20admixtures%20on%20the%20order%20of%203%20%5Cu00d7%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2014%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22123%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20OH%20and%203%20%5Cu00d7%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2013%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22123%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20O.%20Experimental%20results%20are%20used%20to%20benchmark%20densities%20obtained%20from%20zero-dimensional%20plasma%20chemical%20kinetics%20simulations%2C%20which%20reveal%20the%20dominant%20formation%20pathways.%20At%20low%20humidity%20content%2C%20O%20is%20formed%20from%20OH%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20proton%20transfer%20to%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%2C%20which%20also%20initiates%20the%20formation%20of%20large%20cluster%20ions.%20At%20higher%20humidity%20content%2C%20O%20is%20created%20by%20reactions%20between%20OH%20radicals%2C%20and%20lost%20by%20recombination%20with%20OH.%20OH%20is%20produced%20mainly%20from%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20proton%20transfer%20to%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20and%20by%20electron%20impact%20dissociation%20of%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O.%20It%20is%20lost%20by%20reactions%20with%20other%20OH%20molecules%20to%20form%20either%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%2B%20O%20or%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Formation%20pathways%20change%20as%20a%20function%20of%20humidity%20content%20and%20position%20in%20the%20plasma%20channel.%20The%20understanding%20of%20the%20chemical%20kinetics%20of%20O%20and%20OH%20gained%20in%20this%20work%20will%20help%20in%20the%20development%20of%20plasma%20tailoring%20strategies%20to%20optimise%20their%20densities%20in%20applications.%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FC8CP02473A%22%2C%22ISSN%22%3A%221463-9076%2C%201463-9084%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DC8CP02473A%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22LU8XCVEZ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Doyle%20et%20al.%22%2C%22parsedDate%22%3A%222017-11-16%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDoyle%2C%20S.%20J.%2C%20Lafleur%2C%20T.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Tian%2C%20P.%2C%20Kushner%2C%20M.%20J.%2C%20%26amp%3B%20Dedrick%2C%20J.%20%282017%29.%20Enhanced%20control%20of%20the%20ionization%20rate%20in%20radio-frequency%20plasmas%20with%20structured%20electrodes%20via%20tailored%20voltage%20waveforms.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2812%29%2C%20125005.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa96e5%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa96e5%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DLU8XCVEZ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhanced%20control%20of%20the%20ionization%20rate%20in%20radio-frequency%20plasmas%20with%20structured%20electrodes%20via%20tailored%20voltage%20waveforms%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20J%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Trevor%22%2C%22lastName%22%3A%22Lafleur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peng%22%2C%22lastName%22%3A%22Tian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Dedrick%22%7D%5D%2C%22abstractNote%22%3A%22Radio-frequency%20capacitively%20coupled%20plasmas%20that%20incorporate%20structured%20electrodes%20enable%20increases%20in%20the%20electron%20density%20within%20spatially%20localized%20regions%20through%20the%20hollow%20cathode%20effect%20%28HCE%29.%20This%20enables%20enhanced%20control%20over%20the%20spatial%20pro%5Cufb01le%20of%20the%20plasma%20density%2C%20which%20is%20useful%20for%20several%20applications%20including%20materials%20processing%2C%20lighting%20and%20spacecraft%20propulsion.%20However%2C%20asymmetries%20in%20the%20powered%20and%20grounded%20electrode%20areas%20inherent%20to%20the%20hollow%20cathode%20geometry%20lead%20to%20the%20formation%20of%20a%20time%20averaged%20dc%20self-bias%20voltage%20at%20the%20powered%20electrode.%20This%20bias%20alters%20the%20energy%20and%20%5Cufb02ux%20of%20secondary%20electrons%20leaving%20the%20surface%20of%20the%20cathode%20and%20consequentially%20can%20moderate%20the%20increased%20localized%20ionization%20afforded%20by%20the%20hollow%20cathode%20discharge.%20In%20this%20work%2C%20two-dimensional%20%5Cufb02uid-kinetic%20simulations%20are%20used%20to%20demonstrate%20control%20of%20the%20dc%20self-bias%20voltage%20in%20a%20dual-frequency%20driven%20%2813.56%2C%2027.12%5Cuf0a0MHz%29%2C%20hollow%20cathode%20enhanced%2C%20capacitively%20coupled%20argon%20plasma%20over%20the%2066.6%5Cu2013200%5Cuf0a0Pa%20%280.5%5Cu20131.5%5Cuf0a0Torr%29%20pressure%20range.%20By%20varying%20the%20phase%20offset%20of%20the%2027.12%5Cuf0a0MHz%20voltage%20waveform%2C%20the%20dc%20self-bias%20voltage%20varies%20by%2010%25%5Cu201315%25%20over%20an%20applied%20peak-to-peak%20voltage%20range%20of%20600%5Cu20131000%5Cuf0a0V%2C%20with%20lower%20voltages%20showing%20higher%20modulation.%20Resulting%20ionization%20rates%20due%20to%20secondary%20electrons%20within%20the%20hollow%20cathode%20cavity%20vary%20by%20a%20factor%20of%203%20at%20constant%20voltage%20amplitude%2C%20demonstrating%20the%20ability%20to%20control%20plasma%20properties%20relevant%20for%20maintaining%20and%20enhancing%20the%20HCE.%22%2C%22date%22%3A%222017-11-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faa96e5%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faa96e5%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A47Z%22%7D%7D%2C%7B%22key%22%3A%224GNAN3XF%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gibson%20and%20Gans%22%2C%22parsedDate%22%3A%222017-10-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20%26amp%3B%20Gans%2C%20T.%20%282017%29.%20Controlling%20plasma%20properties%20under%20differing%20degrees%20of%20electronegativity%20using%20odd%20harmonic%20dual%20frequency%20excitation.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2811%29%2C%20115007.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8dcd%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8dcd%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D4GNAN3XF%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controlling%20plasma%20properties%20under%20differing%20degrees%20of%20electronegativity%20using%20odd%20harmonic%20dual%20frequency%20excitation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22The%20charged%20particle%20dynamics%20in%20low-pressure%20oxygen%20plasmas%20excited%20by%20odd%20harmonic%20dual%20frequency%20waveforms%20%28low%20frequency%20of%2013.56%20MHz%20and%20high%20frequency%20of%2040.68%20MHz%29%20are%20investigated%20using%20a%20one-dimensional%20numerical%20simulation%20in%20regimes%20of%20both%20low%20and%20high%20electronegativity.%20In%20the%20low%20electronegativity%20regime%2C%20the%20time%20and%20space%20averaged%20electron%20and%20negative%20ion%20densities%20are%20approximately%20equal%20and%20plasma%20sustainment%20is%20dominated%20by%20ionisation%20at%20the%20sheath%20expansion%20for%20all%20combinations%20of%20low%20and%20high%20frequency%20and%20the%20phase%20shift%20between%20them.%20In%20the%20high%20electronegativity%20regime%2C%20the%20negative%20ion%20density%20is%20a%20factor%20of%2015%5Cu201320%20greater%20than%20the%20low%20electronegativity%20cases.%20In%20these%20cases%2C%20plasma%20sustainment%20is%20dominated%20by%20ionisation%20inside%20the%20bulk%20plasma%20and%20at%20the%20collapsing%20sheath%20edge%20when%20the%20contribution%20of%20the%20high%20frequency%20to%20the%20overall%20voltage%20waveform%20is%20low.%20As%20the%20high%20frequency%20component%20contribution%20to%20the%20waveform%20increases%2C%20sheath%20expansion%20ionisation%20begins%20to%20dominate.%20It%20is%20found%20that%20the%20control%20of%20the%20average%20voltage%20drop%20across%20the%20plasma%20sheath%20and%20the%20average%20ion%20%5Cufb02ux%20to%20the%20powered%20electrode%20are%20similar%20in%20both%20regimes%20of%20electronegativity%2C%20despite%20the%20differing%20electron%20dynamics%20using%20the%20considered%20dual%20frequency%20approach.%20This%20offers%20potential%20for%20similar%20control%20of%20ion%20dynamics%20under%20a%20range%20of%20process%20conditions%2C%20independent%20of%20the%20electronegativity.%20This%20is%20in%20contrast%20to%20ion%20control%20offered%20by%20electrically%20asymmetric%20waveforms%20where%20the%20relationship%20between%20the%20ion%20%5Cufb02ux%20and%20ion%20bombardment%20energy%20is%20dependent%20upon%20the%20electronegativity.%22%2C%22date%22%3A%222017-10-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faa8dcd%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8dcd%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22U5HN4T95%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wijaikhum%20et%20al.%22%2C%22parsedDate%22%3A%222017-10-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWijaikhum%2C%20A.%2C%20Schr%26%23xF6%3Bder%2C%20D.%2C%20Schr%26%23xF6%3Bter%2C%20S.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Niemi%2C%20K.%2C%20Friderich%2C%20J.%2C%20Greb%2C%20A.%2C%20Schulz-von%20der%20Gathen%2C%20V.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Gans%2C%20T.%20%282017%29.%20Absolute%20ozone%20densities%20in%20a%20radio-frequency%20driven%20atmospheric%20pressure%20plasma%20using%20two-beam%20UV-LED%20absorption%20spectroscopy%20and%20numerical%20simulations.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2811%29%2C%20115004.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8ebb%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8ebb%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DU5HN4T95%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Absolute%20ozone%20densities%20in%20a%20radio-frequency%20driven%20atmospheric%20pressure%20plasma%20using%20two-beam%20UV-LED%20absorption%20spectroscopy%20and%20numerical%20simulations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Wijaikhum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Schr%5Cu00f6der%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K%22%2C%22lastName%22%3A%22Niemi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Friderich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Greb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%22%2C%22lastName%22%3A%22Schulz-von%20der%20Gathen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22The%20ef%5Cufb01cient%20generation%20of%20reactive%20oxygen%20species%20%28ROS%29%20in%20cold%20atmospheric%20pressure%20plasma%20jets%20%28APPJs%29%20is%20an%20increasingly%20important%20topic%2C%20e.g.%20for%20the%20treatment%20of%20temperature%20sensitive%20biological%20samples%20in%20the%20%5Cufb01eld%20of%20plasma%20medicine.%20A%2013.56%20MHz%20radio-frequency%20%28rf%29%20driven%20APPJ%20device%20operated%20with%20helium%20feed%20gas%20and%20small%20admixtures%20of%20oxygen%20%28up%20to%201%25%29%2C%20generating%20a%20homogeneous%20glow-mode%20plasma%20at%20low%20gas%20temperatures%2C%20was%20investigated.%20Absolute%20densities%20of%20ozone%2C%20one%20of%20the%20most%20prominent%20ROS%2C%20were%20measured%20across%20the%2011%20mm%20wide%20discharge%20channel%20by%20means%20of%20broadband%20absorption%20spectroscopy%20using%20the%20Hartley%20band%20centred%20at%20%5Cu03bb%5Cuf0a0%3D%5Cuf0a0255%20nm.%20A%20two-beam%20setup%20with%20a%20reference%20beam%20in%20Mach%5Cu2013Zehnder%20con%5Cufb01guration%20is%20employed%20for%20improved%20signal-to-noise%20ratio%20allowing%20high-sensitivity%20measurements%20in%20the%20investigated%20single-pass%20weakabsorbance%20regime.%20The%20results%20are%20correlated%20to%20gas%20temperature%20measurements%2C%20deduced%20from%20the%20rotational%20temperature%20of%20the%20N2%20%28C%203P%2Bu%20%5Cuf0ae%20B%203P%2Bg%20%2C%20%5Cu03c5%5Cuf0a0%3D%5Cuf0a00%20%5Cuf0ae%202%29%20optical%20emission%20from%20introduced%20air%20impurities.%20The%20observed%20opposing%20trends%20of%20both%20quantities%20as%20a%20function%20of%20rf%20power%20input%20and%20oxygen%20admixture%20are%20analysed%20and%20explained%20in%20terms%20of%20a%20zero-dimensional%20plasma-chemical%20kinetics%20simulation.%20It%20is%20found%20that%20the%20gas%20temperature%20as%20well%20as%20the%20densities%20of%20O%20and%20O2%28b1S%2Bg%20%29%20in%5Cufb02uence%20the%20absolute%20O3%20densities%20when%20the%20rf%20power%20is%20varied.%22%2C%22date%22%3A%222017-10-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faa8ebb%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faa8ebb%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22XGVT7JP5%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tsutsumi%20et%20al.%22%2C%22parsedDate%22%3A%222017-04-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETsutsumi%2C%20T.%2C%20Greb%2C%20A.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Hori%2C%20M.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Gans%2C%20T.%20%282017%29.%20Investigation%20of%20the%20radially%20resolved%20oxygen%20dissociation%20degree%20and%20local%20mean%20electron%20energy%20in%20oxygen%20plasmas%20in%20contact%20with%20different%20surface%20materials.%20%3Ci%3EJournal%20of%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E121%3C%5C%2Fi%3E%2814%29%2C%20143301.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4979855%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4979855%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DXGVT7JP5%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigation%20of%20the%20radially%20resolved%20oxygen%20dissociation%20degree%20and%20local%20mean%20electron%20energy%20in%20oxygen%20plasmas%20in%20contact%20with%20different%20surface%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Tsutsumi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Greb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Hori%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22O%27Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222017-04-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4979855%22%2C%22ISSN%22%3A%220021-8979%2C%201089-7550%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Faip.scitation.org%5C%2Fdoi%5C%2F10.1063%5C%2F1.4979855%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A37Z%22%7D%7D%2C%7B%22key%22%3A%229NPXTZVC%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Derzsi%20et%20al.%22%2C%22parsedDate%22%3A%222017-02-07%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDerzsi%2C%20A.%2C%20Bruneau%2C%20B.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Johnson%2C%20E.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20Gans%2C%20T.%2C%20Booth%2C%20J.-P.%2C%20%26amp%3B%20Donk%26%23xF3%3B%2C%20Z.%20%282017%29.%20Power%20coupling%20mode%20transitions%20induced%20by%20tailored%20voltage%20waveforms%20in%20capacitive%20oxygen%20discharges.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%283%29%2C%20034002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa56d6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Faa56d6%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D9NPXTZVC%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Power%20coupling%20mode%20transitions%20induced%20by%20tailored%20voltage%20waveforms%20in%20capacitive%20oxygen%20discharges%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aranka%22%2C%22lastName%22%3A%22Derzsi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bastien%22%2C%22lastName%22%3A%22Bruneau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20Robert%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erik%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%5Cu2019Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Paul%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zolt%5Cu00e1n%22%2C%22lastName%22%3A%22Donk%5Cu00f3%22%7D%5D%2C%22abstractNote%22%3A%22Low-pressure%20capacitively%20coupled%20radio%20frequency%20discharges%20operated%20in%20O2%20and%20driven%20by%20tailored%20voltage%20waveforms%20are%20investigated%20experimentally%20and%20by%20means%20of%20kinetic%20simulations.%20Pulse-type%20%28peaks%5C%2Fvalleys%29%20and%20sawtooth-type%20voltage%20waveforms%20that%20consist%20of%20up%20to%20four%20consecutive%20harmonics%20of%20the%20fundamental%20frequency%20are%20used%20to%20study%20the%20amplitude%20asymmetry%20effect%20as%20well%20as%20the%20slope%20asymmetry%20effect%20at%20different%20fundamental%20frequencies%20%285%2C%2010%2C%20and%2015%20MHz%29%20and%20at%20different%20pressures%20%2850%5Cu2013700%20mTorr%29.%20Values%20of%20the%20DC%20self-bias%20determined%20experimentally%20and%20spatio-temporal%20excitation%20rates%20derived%20from%20phase%20resolved%20optical%20emission%20spectroscopy%20measurements%20are%20compared%20with%20particle-in-cell%5C%2FMonte%20Carlo%20collisions%20simulations.%20The%20spatio-temporal%20distributions%20of%20the%20excitation%20rate%20obtained%20from%20experiments%20are%20well%20reproduced%20by%20the%20simulations.%20Transitions%20of%20the%20discharge%20electron%20heating%20mode%20from%20the%20drift-ambipolar%20mode%20to%20the%20%5Cu03b1-mode%20are%20induced%20by%20changing%20the%20number%20of%20consecutive%20harmonics%20included%20in%20the%20driving%20voltage%20waveform%20or%20by%20changing%20the%20gas%20pressure.%20Changing%20the%20number%20of%20harmonics%20in%20the%20waveform%20has%20a%20strong%20effect%20on%20the%20electronegativity%20of%20the%20discharge%2C%20on%20the%20generation%20of%20the%20DC%20self-bias%20and%20on%20the%20control%20of%20ion%20properties%20at%20the%20electrodes%2C%20both%20for%20pulse-type%2C%20as%20well%20as%20sawtooth-type%20driving%20voltage%20waveforms%20The%20effect%20of%20the%20surface%20quenching%20rate%20of%20oxygen%20singlet%20delta%20metastable%20molecules%20on%20the%20spatio-temporal%20excitation%20patterns%20is%20also%20investigated.%22%2C%22date%22%3A%222017-02-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Faa56d6%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Faa56d6%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22BZV57QBJ%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gibson%20et%20al.%22%2C%22parsedDate%22%3A%222017-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Foucher%2C%20M.%2C%20Marinov%2C%20D.%2C%20Chabert%2C%20P.%2C%20Gans%2C%20T.%2C%20Kushner%2C%20M.%20J.%2C%20%26amp%3B%20Booth%2C%20J.-P.%20%282017%29.%20The%20role%20of%20thermal%20energy%20accommodation%20and%20atomic%20recombination%20probabilities%20in%20low%20pressure%20oxygen%20plasmas.%20%3Ci%3EPlasma%20Physics%20and%20Controlled%20Fusion%3C%5C%2Fi%3E%2C%20%3Ci%3E59%3C%5C%2Fi%3E%282%29%2C%20024004.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2F59%5C%2F2%5C%2F024004%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2F59%5C%2F2%5C%2F024004%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DBZV57QBJ%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20role%20of%20thermal%20energy%20accommodation%20and%20atomic%20recombination%20probabilities%20in%20low%20pressure%20oxygen%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20Robert%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micka%5Cu00ebl%22%2C%22lastName%22%3A%22Foucher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniil%22%2C%22lastName%22%3A%22Marinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22Chabert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20J%22%2C%22lastName%22%3A%22Kushner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Paul%22%2C%22lastName%22%3A%22Booth%22%7D%5D%2C%22abstractNote%22%3A%22Surface%20interaction%20probabilities%20are%20critical%20parameters%20that%20determine%20the%20behaviour%20of%20low%20pressure%20plasmas%20and%20so%20are%20crucial%20input%20parameters%20for%20plasma%20simulations%20that%20play%20a%20key%20role%20in%20determining%20their%20accuracy.%20However%2C%20these%20parameters%20are%20dif%5Cufb01cult%20to%20estimate%20without%20in%20situ%20measurements.%20In%20this%20work%2C%20the%20role%20of%20two%20prominent%20surface%20interaction%20probabilities%2C%20the%20atomic%20oxygen%20recombination%20coef%5Cufb01cient%20%5Cu03b3O%20and%20the%20thermal%20energy%20accommodation%20coef%5Cufb01cient%20%5Cu03b1E%20in%20determining%20the%20plasma%20properties%20of%20low%20pressure%20inductively%20coupled%20oxygen%20plasmas%20are%20investigated%20using%20two-dimensional%20%5Cufb02uid-kinetic%20simulations.%20These%20plasmas%20are%20the%20type%20used%20for%20semiconductor%20processing.%20It%20was%20found%20that%20%5Cu03b1E%20plays%20a%20crucial%20role%20in%20determining%20the%20neutral%20gas%20temperature%20and%20neutral%20gas%20density.%20Through%20this%20dependency%2C%20the%20value%20of%20%5Cu03b1E%20also%20determines%20a%20range%20of%20other%20plasma%20properties%20such%20as%20the%20atomic%20oxygen%20density%2C%20the%20plasma%20potential%2C%20the%20electron%20temperature%2C%20and%20ion%20bombardment%20energy%20and%20neutral-to-ion%20%5Cufb02ux%20ratio%20at%20the%20wafer%20holder.%20The%20main%20role%20of%20%5Cu03b3O%20is%20in%20determining%20the%20atomic%20oxygen%20density%20and%20%5Cufb02ux%20to%20the%20wafer%20holder%20along%20with%20the%20neutral-to-ion%20%5Cufb02ux%20ratio.%20It%20was%20found%20that%20the%20plasma%20properties%20are%20most%20sensitive%20to%20each%20coef%5Cufb01cient%20when%20the%20value%20of%20the%20coef%5Cufb01cient%20is%20small%20causing%20the%20losses%20of%20atomic%20oxygen%20and%20thermal%20energy%20to%20be%20surface%20interaction%20limited%20rather%20than%20transport%20limited.%22%2C%22date%22%3A%222017-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6587%5C%2F59%5C%2F2%5C%2F024004%22%2C%22ISSN%22%3A%220741-3335%2C%201361-6587%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6587%5C%2F59%5C%2F2%5C%2F024004%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A06Z%22%7D%7D%2C%7B%22key%22%3A%2243UQFMWY%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dedrick%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDedrick%2C%20J.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Rafalskyi%2C%20D.%2C%20%26amp%3B%20Aanesland%2C%20A.%20%282017%29.%20Transient%20propagation%20dynamics%20of%20flowing%20plasmas%20accelerated%20by%20radio-frequency%20electric%20fields.%20%3Ci%3EPhysics%20of%20Plasmas%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%285%29%2C%20050703.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4983059%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4983059%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D43UQFMWY%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transient%20propagation%20dynamics%20of%20flowing%20plasmas%20accelerated%20by%20radio-frequency%20electric%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Dedrick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20Robert%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmytro%22%2C%22lastName%22%3A%22Rafalskyi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ane%22%2C%22lastName%22%3A%22Aanesland%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2205%5C%2F2017%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4983059%22%2C%22ISSN%22%3A%221070-664X%2C%201089-7674%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Faip.scitation.org%5C%2Fdoi%5C%2F10.1063%5C%2F1.4983059%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A40Z%22%7D%7D%2C%7B%22key%22%3A%228YG585WY%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hurlbatt%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHurlbatt%2C%20A.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Schr%26%23xF6%3Bter%2C%20S.%2C%20Bredin%2C%20J.%2C%20Foote%2C%20A.%20P.%20S.%2C%20Grondein%2C%20P.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Gans%2C%20T.%20%282017%29.%20Concepts%2C%20Capabilities%2C%20and%20Limitations%20of%20Global%20Models%3A%20A%20Review%3A%20Concepts%2C%20Capabilities%2C%20and%20Limitations%20of%20Global%20Models%20%26%23x2026%3B.%20%3Ci%3EPlasma%20Processes%20and%20Polymers%3C%5C%2Fi%3E%2C%20%3Ci%3E14%3C%5C%2Fi%3E%281%26%23x2013%3B2%29%2C%201600138.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201600138%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201600138%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D8YG585WY%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Concepts%2C%20Capabilities%2C%20and%20Limitations%20of%20Global%20Models%3A%20A%20Review%3A%20Concepts%2C%20Capabilities%2C%20and%20Limitations%20of%20Global%20Models%20%5Cu2026%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Hurlbatt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20Robert%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Schr%5Cu00f6ter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Bredin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%20Paul%20Stuart%22%2C%22lastName%22%3A%22Foote%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascaline%22%2C%22lastName%22%3A%22Grondein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%27Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timo%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2201%5C%2F2017%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fppap.201600138%22%2C%22ISSN%22%3A%2216128850%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fppap.201600138%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22BCBZCAVW%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gibson%20et%20al.%22%2C%22parsedDate%22%3A%222015-02-02%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20Greb%2C%20A.%2C%20Graham%2C%20W.%20G.%2C%20%26amp%3B%20Gans%2C%20T.%20%282015%29.%20Tailoring%20the%20nonlinear%20frequency%20coupling%20between%20odd%20harmonics%20for%20the%20optimisation%20of%20charged%20particle%20dynamics%20in%20capacitively%20coupled%20oxygen%20plasmas.%20%3Ci%3EApplied%20Physics%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E106%3C%5C%2Fi%3E%285%29%2C%20054102.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4907567%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4907567%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DBCBZCAVW%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tailoring%20the%20nonlinear%20frequency%20coupling%20between%20odd%20harmonics%20for%20the%20optimisation%20of%20charged%20particle%20dynamics%20in%20capacitively%20coupled%20oxygen%20plasmas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Greb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20G.%22%2C%22lastName%22%3A%22Graham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Gans%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222015-02-02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4907567%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Faip.scitation.org%5C%2Fdoi%5C%2F10.1063%5C%2F1.4907567%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22WMYADUA4%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rajendiran%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERajendiran%2C%20S.%2C%20Rossall%2C%20A.%20K.%2C%20%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%2C%20%26amp%3B%20Wagenaars%2C%20E.%20%282014%29.%20Modelling%20of%20laser%20ablation%20and%20reactive%20oxygen%20plasmas%20for%20pulsed%20laser%20deposition%20of%20zinc%20oxide.%20%3Ci%3ESurface%20and%20Coatings%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E260%3C%5C%2Fi%3E%2C%20417%26%23x2013%3B423.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.surfcoat.2014.06.062%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.surfcoat.2014.06.062%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DWMYADUA4%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Modelling%20of%20laser%20ablation%20and%20reactive%20oxygen%20plasmas%20for%20pulsed%20laser%20deposition%20of%20zinc%20oxide%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Rajendiran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.K.%22%2C%22lastName%22%3A%22Rossall%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Wagenaars%22%7D%5D%2C%22abstractNote%22%3A%22Pulsed%20laser%20deposition%20%28PLD%29%20in%20a%20low-pressure%20oxygen%20atmosphere%20is%20commonly%20used%20for%20the%20production%20of%20high-quality%2C%20stoichiometric%20zinc%20oxide%20thin%20%5Cufb01lms.%20An%20alternative%20approach%20that%20has%20the%20potential%20bene%5Cufb01t%20of%20increased%20process%20control%20is%20plasma-enhanced%20PLD%2C%20i.e.%20the%20use%20of%20a%20low-temperature%20oxygen%20plasma%20instead%20of%20a%20neutral%20gas.%20So%20far%2C%20the%20development%20of%20PE-PLD%2C%20and%20PLD%20in%20general%2C%20has%20been%20hampered%20by%20a%20lack%20of%20detailed%20understanding%20of%20the%20underpinning%20physics%20and%20chemistry.%20In%20this%20paper%2C%20we%20present%20modelling%20investigations%20aimed%20at%20further%20developing%20such%20understanding.%20Two-dimensional%20modelling%20of%20an%20inductively-coupled%20radiofrequency%20oxygen%20plasma%20showed%20that%20densities%20of%201014%5Cu20131015%20cm%5Cu22123%20of%20reactive%20oxygen%20species%20O%20and%20O2%2A%20can%20be%20produced%20for%20operating%20pressures%20between%203%20and%20100%20Pa.%20Together%20with%20the%20absolute%20densities%20of%20species%2C%20also%20the%20ratio%20between%20different%20reactive%20species%2C%20e.g.%20O%20and%20O2%2A%2C%20can%20be%20controlled%20by%20changing%20the%20operating%20pressure.%20Both%20can%20be%20used%20to%20%5Cufb01nd%20the%20optimum%20conditions%20for%20stoichiometric%20zinc%20oxide%20thin%20%5Cufb01lm%20deposition.%20Additionally%2C%20we%20investigated%20laser%20ablation%20of%20zinc%20using%20a%20different%20two-dimensional%20hydrodynamic%20code%20%28POLLUX%29.%20This%20showed%20that%20the%20amount%20of%20material%20that%20is%20ablated%20increases%20from%202.9%20to%204.7%20%5Cu03bcg%20per%20pulse%20for%20laser%20%5Cufb02uences%20from%202%20to%2010%20J%5C%2Fcm2.%20However%2C%20the%20increased%20laser%20%5Cufb02uence%20also%20results%20in%20an%20increased%20average%20ionisation%20of%20the%20plasma%20plume%2C%20from%203.4%20to%205.6%20over%20the%20same%20%5Cufb02uence%20range%2C%20which%20is%20likely%20to%20in%5Cufb02uence%20the%20chemistry%20near%20the%20deposition%20substrate%20and%20consequently%20the%20%5Cufb01lm%20quality.%22%2C%22date%22%3A%2212%5C%2F2014%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.surfcoat.2014.06.062%22%2C%22ISSN%22%3A%2202578972%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0257897214006161%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A44%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22VYPPRK2E%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gibson%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EGibson%3C%5C%2Fstrong%3E%2C%20A.%20R.%2C%20McCarthy%2C%20H.%20O.%2C%20Ali%2C%20A.%20A.%2C%20O%26%23x2019%3BConnell%2C%20D.%2C%20%26amp%3B%20Graham%2C%20W.%20G.%20%282014%29.%20Interactions%20of%20a%20Non-Thermal%20Atmospheric%20Pressure%20Plasma%20Effluent%20with%20PC-3%20Prostate%20Cancer%20Cells%3A%20Interactions%20of%20a%20Non-Thermal%20Atmospheric%20Pressure%20%26%23x2026%3B.%20%3Ci%3EPlasma%20Processes%20and%20Polymers%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%2812%29%2C%201142%26%23x2013%3B1149.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201400111%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fppap.201400111%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DVYPPRK2E%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interactions%20of%20a%20Non-Thermal%20Atmospheric%20Pressure%20Plasma%20Effluent%20with%20PC-3%20Prostate%20Cancer%20Cells%3A%20Interactions%20of%20a%20Non-Thermal%20Atmospheric%20Pressure%20%5Cu2026%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helen%20O.%22%2C%22lastName%22%3A%22McCarthy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahalm%20A.%22%2C%22lastName%22%3A%22Ali%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deborah%22%2C%22lastName%22%3A%22O%27Connell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%20G.%22%2C%22lastName%22%3A%22Graham%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2014%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fppap.201400111%22%2C%22ISSN%22%3A%2216128850%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fppap.201400111%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-18T04%3A43%3A58Z%22%7D%7D%5D%7D
Böddecker, A., Passmann, M., Segura, A. N. T., Bodnar, A., Awakowicz, F., Oppotsch, T., Muhler, M., Awakowicz, P., Gibson, A. R., Korolov, I., & Mussenbrock, T. (2025). The role of flow field dynamics in enhancing volatile organic compound conversion in a surface dielectric barrier discharge system. Journal of Physics D: Applied Physics, 58(2), 025208. https://doi.org/10.1088/1361-6463/ad8454 Cite
He, Y., Kuhfeld, J., Lepikhin, N. D., Czarnetzki, U., Guerra, V., Peter Brinkmann, R., Gibson, A. R., & Kemaneci, E. (2024). Zero-dimensional simulations of DC ns-pulsed plasma jet in N2 at near atmospheric pressure: validation of the vibrational kinetics. Plasma Sources Science and Technology, 33(11), 115011. https://doi.org/10.1088/1361-6595/ad8a86 Cite
Osca Engelbrecht, M., Jenderny, J., Hylla, H., Filla, D., Awakowicz, P., Korolov, I., Ridgers, C. P., & Gibson, A. R. (2024). Numerical investigation of vacuum ultra-violet emission in Ar/O 2 inductively coupled plasmas. Plasma Sources Science and Technology, 33(9), 095008. https://doi.org/10.1088/1361-6595/ad7059 Cite
Smith, G. J., Diomede, P., Gibson, A. R., Doyle, S. J., Guerra, V., Kushner, M. J., Gans, T., & Dedrick, J. P. (2024). Low-pressure inductively coupled plasmas in hydrogen: impact of gas heating on the spatial distribution of atomic hydrogen and vibrationally excited states. Plasma Sources Science and Technology, 33(2), 025002. https://doi.org/10.1088/1361-6595/ad1ece Cite
Schüttler, S., Schöne, A. L., Jeß, E., Gibson, A. R., & Golda, J. (2024). Production and transport of plasma-generated hydrogen peroxide from gas to liquid. Physical Chemistry Chemical Physics, 10.1039.D3CP04290A. https://doi.org/10.1039/D3CP04290A Cite
Nawrath, N., Korolov, I., Bibinov, N., Awakowicz, P., & Gibson, A. R. (2023). Spatio-temporal dynamics of electrons and helium metastables in uniform dielectric barrier discharges formed in He/N 2. Plasma Sources Science and Technology, 32(12), 125014. https://doi.org/10.1088/1361-6595/ad1513 Cite
Böddecker, A., Passmann, M., Wilczek, S., Schücke, L., Korolov, I., Skoda, R., Mussenbrock, T., Gibson, A. R., & Awakowicz, P. (2023). Interactions Between Flow Fields Induced by Surface Dielectric Barrier Discharge Arrays. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10406-y Cite
Davies, H. L., Guerra, V., van der Woude, M., Gans, T., O’Connell, D., & Gibson, A. R. (2023). Vibrational kinetics in repetitively pulsed atmospheric pressure nitrogen discharges: average-power-dependent switching behaviour. Plasma Sources Science and Technology, 32(1), 014003. https://doi.org/10.1088/1361-6595/aca9f4 Cite
Steuer, D., van Impel, H., Gibson, A. R., Schulz-von der Gathen, V., Böke, M., & Golda, J. (2022). State enhanced actinometry in the COST microplasma jet. Plasma Sources Science and Technology, 31(10), 10LT01. https://doi.org/10.1088/1361-6595/ac90e8 Cite
Tennyson, J., Mohr, S., Hanicinec, M., Dzarasova, A., Smith, C., Waddington, S., Liu, B., Alves, L. L., Bartschat, K., Bogaerts, A., Engelmann, S. U., Gans, T., Gibson, A. R., Hamaguchi, S., Hamilton, K. R., Hill, C., O’Connell, D., Rauf, S., van ’t Veer, K., & Zatsarinny, O. (2022). The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions. Plasma Sources Science and Technology, 31(9), 095020. https://doi.org/10.1088/1361-6595/ac907e Cite
Ďurian, J., Hartmann, P., Matejčík, Š., Gibson, A. R., & Donkó, Z. (2022). Experimental and simulation study of a capacitively coupled radiofrequency plasma with a structured electrode. Plasma Sources Science and Technology, 31(9), 095001. https://doi.org/10.1088/1361-6595/ac8449 Cite
Schücke, L., Bodnar, A., Friedrichs, N., Böddecker, A., Peters, N., Ollegott, K., Oberste-Beulmann, C., Wirth, P., Nguyen-Smith, R. T., Korolov, I., Gibson, A. R., Muhler, M., & Awakowicz, P. (2022). Optical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 55(21), 215205. https://doi.org/10.1088/1361-6463/ac5661 Cite
Böddecker, A., Bodnar, A., Schücke, L., Giesekus, J., Wenselau, K., Nguyen-Smith, R. T., Oppotsch, T., Oberste-Beulmann, C., Muhler, M., Gibson, A. R., & Awakowicz, P. (2022). A scalable twin surface dielectric barrier discharge system for pollution remediation at high gas flow rates. Reaction Chemistry & Engineering, 10.1039.D2RE00167E. https://doi.org/10.1039/D2RE00167E Cite
Brisset, A., Gibson, A. R., Schröter, S., Niemi, K., Booth, J.-P., Gans, T., O’Connell, D., & Wagenaars, E. (2021). Chemical kinetics and density measurements of OH in an atmospheric pressure He + O 2 + H 2 O radiofrequency plasma. Journal of Physics D: Applied Physics, 54(28), 285201. https://doi.org/10.1088/1361-6463/abefec Cite
Hillebrand, B., Iglesias, E., Gibson, A. R., Bibinov, N., Neugebauer, A., Enderle, M., & Awakowicz, P. (2020). Determination of plasma parameters by spectral line broadening in an electrosurgical argon plasma. Plasma Sources Science and Technology, 29(12), 125011. https://doi.org/10.1088/1361-6595/abc411 Cite
Doyle, S. J., Gibson, A. R., Boswell, R. W., Charles, C., & Dedrick, J. P. (2020). Decoupling ion energy and flux in intermediate pressure capacitively coupled plasmas via tailored voltage waveforms. Plasma Sources Science and Technology, 29(12), 124002. https://doi.org/10.1088/1361-6595/abc82f Cite
Schücke, L., Gembus, J.-L., Peters, N., Kogelheide, F., Nguyen-Smith, R. T., Gibson, A. R., Schulze, J., Muhler, M., & Awakowicz, P. (2020). Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 29(11), 114003. https://doi.org/10.1088/1361-6595/abae0b Cite
Schröter, S., Bredin, J., Gibson, A. R., West, A., Dedrick, J. P., Wagenaars, E., Niemi, K., Gans, T., & O’Connell, D. (2020). The formation of atomic oxygen and hydrogen in atmospheric pressure plasmas containing humidity: picosecond two-photon absorption laser induced fluorescence and numerical simulations. Plasma Sources Science and Technology, 29(10), 105001. https://doi.org/10.1088/1361-6595/abab55 Cite
Kogelheide, F., Voigt, F., Hillebrand, B., Moeller, R., Fuchs, F., Gibson, A. R., Awakowicz, P., Stapelmann, K., & Fiebrandt, M. (2020). The role of humidity and UV-C emission in the inactivation of B. subtilis spores during atmospheric-pressure dielectric barrier discharge treatment. Journal of Physics D: Applied Physics, 53(29), 295201. https://doi.org/10.1088/1361-6463/ab77cc Cite
Doyle, S. J., Gibson, A. R., Boswell, R. W., Charles, C., & Dedrick, J. P. (2019). Control of electron, ion and neutral heating in a radio-frequency electrothermal microthruster via dual-frequency voltage waveforms. Plasma Sources Science and Technology, 28(3), 035019. https://doi.org/10.1088/1361-6595/ab0984 Cite
Gibson, A. R., Donkó, Z., Alelyani, L., Bischoff, L., Hübner, G., Bredin, J., Doyle, S., Korolov, I., Niemi, K., Mussenbrock, T., Hartmann, P., Dedrick, J. P., Schulze, J., Gans, T., & O’Connell, D. (2019). Disrupting the spatio-temporal symmetry of the electron dynamics in atmospheric pressure plasmas by voltage waveform tailoring. Plasma Sources Science and Technology, 28(1), 01LT01. https://doi.org/10.1088/1361-6595/aaf535 Cite
Doyle, S. J., Gibson, A. R., Boswell, R. W., Charles, C., & Dedrick, J. P. (2019). Inducing locally structured ion energy distributions in intermediate-pressure plasmas. Physics of Plasmas, 26(7), 073519. https://doi.org/10.1063/1.5111401 Cite
Hamilton, J. R., Tennyson, J., Booth, J.-P., Gans, T., & Gibson, A. R. (2018). Calculated electron impact dissociation cross sections for molecular chlorine (Cl 2 ). Plasma Sources Science and Technology, 27(9), 095008. https://doi.org/10.1088/1361-6595/aada32 Cite
Doyle, S. J., Gibson, A. R., Flatt, J., Ho, T. S., Boswell, R. W., Charles, C., Tian, P., Kushner, M. J., & Dedrick, J. (2018). Spatio-temporal plasma heating mechanisms in a radio frequency electrothermal microthruster. Plasma Sources Science and Technology, 27(8), 085011. https://doi.org/10.1088/1361-6595/aad79a Cite
Donkó, Z., Derzsi, A., Korolov, I., Hartmann, P., Brandt, S., Schulze, J., Berger, B., Koepke, M., Bruneau, B., Johnson, E., Lafleur, T., Booth, J.-P., Gibson, A. R., O’Connell, D., & Gans, T. (2018). Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases. Plasma Physics and Controlled Fusion, 60(1), 014010. https://doi.org/10.1088/1361-6587/aa8378 Cite
Schröter, S., Gibson, A. R., Kushner, M. J., Gans, T., & O’Connell, D. (2018). Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity. Plasma Physics and Controlled Fusion, 60(1), 014035. https://doi.org/10.1088/1361-6587/aa8fe9 Cite
Schröter, S., Wijaikhum, A., Gibson, A. R., West, A., Davies, H. L., Minesi, N., Dedrick, J., Wagenaars, E., de Oliveira, N., Nahon, L., Kushner, M. J., Booth, J.-P., Niemi, K., Gans, T., & O’Connell, D. (2018). Chemical kinetics in an atmospheric pressure helium plasma containing humidity. Physical Chemistry Chemical Physics, 20(37), 24263–24286. https://doi.org/10.1039/C8CP02473A Cite
Doyle, S. J., Lafleur, T., Gibson, A. R., Tian, P., Kushner, M. J., & Dedrick, J. (2017). Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms. Plasma Sources Science and Technology, 26(12), 125005. https://doi.org/10.1088/1361-6595/aa96e5 Cite
Gibson, A. R., & Gans, T. (2017). Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation. Plasma Sources Science and Technology, 26(11), 115007. https://doi.org/10.1088/1361-6595/aa8dcd Cite
Wijaikhum, A., Schröder, D., Schröter, S., Gibson, A. R., Niemi, K., Friderich, J., Greb, A., Schulz-von der Gathen, V., O’Connell, D., & Gans, T. (2017). Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations. Plasma Sources Science and Technology, 26(11), 115004. https://doi.org/10.1088/1361-6595/aa8ebb Cite
Tsutsumi, T., Greb, A., Gibson, A. R., Hori, M., O’Connell, D., & Gans, T. (2017). Investigation of the radially resolved oxygen dissociation degree and local mean electron energy in oxygen plasmas in contact with different surface materials. Journal of Applied Physics, 121(14), 143301. https://doi.org/10.1063/1.4979855 Cite
Derzsi, A., Bruneau, B., Gibson, A. R., Johnson, E., O’Connell, D., Gans, T., Booth, J.-P., & Donkó, Z. (2017). Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges. Plasma Sources Science and Technology, 26(3), 034002. https://doi.org/10.1088/1361-6595/aa56d6 Cite
Gibson, A. R., Foucher, M., Marinov, D., Chabert, P., Gans, T., Kushner, M. J., & Booth, J.-P. (2017). The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas. Plasma Physics and Controlled Fusion, 59(2), 024004. https://doi.org/10.1088/1361-6587/59/2/024004 Cite
Dedrick, J., Gibson, A. R., Rafalskyi, D., & Aanesland, A. (2017). Transient propagation dynamics of flowing plasmas accelerated by radio-frequency electric fields. Physics of Plasmas, 24(5), 050703. https://doi.org/10.1063/1.4983059 Cite
Hurlbatt, A., Gibson, A. R., Schröter, S., Bredin, J., Foote, A. P. S., Grondein, P., O’Connell, D., & Gans, T. (2017). Concepts, Capabilities, and Limitations of Global Models: A Review: Concepts, Capabilities, and Limitations of Global Models …. Plasma Processes and Polymers, 14(1–2), 1600138. https://doi.org/10.1002/ppap.201600138 Cite
Gibson, A. R., Greb, A., Graham, W. G., & Gans, T. (2015). Tailoring the nonlinear frequency coupling between odd harmonics for the optimisation of charged particle dynamics in capacitively coupled oxygen plasmas. Applied Physics Letters, 106(5), 054102. https://doi.org/10.1063/1.4907567 Cite
Rajendiran, S., Rossall, A. K., Gibson, A., & Wagenaars, E. (2014). Modelling of laser ablation and reactive oxygen plasmas for pulsed laser deposition of zinc oxide. Surface and Coatings Technology, 260, 417–423. https://doi.org/10.1016/j.surfcoat.2014.06.062 Cite
Gibson, A. R., McCarthy, H. O., Ali, A. A., O’Connell, D., & Graham, W. G. (2014). Interactions of a Non-Thermal Atmospheric Pressure Plasma Effluent with PC-3 Prostate Cancer Cells: Interactions of a Non-Thermal Atmospheric Pressure …. Plasma Processes and Polymers, 11(12), 1142–1149. https://doi.org/10.1002/ppap.201400111 Cite