Researcher
Address
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Universitätsstraße 150
D-44801 Bochum, Germany
Room
ID 1/539
Phone
+49 234 32 12156
Email
gembus(at)aept.rub.de

Publikationen
2825793
Gembus
apa
50
date
desc
year
1
Gembus
480
https://www.aept.ruhr-uni-bochum.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-5fdc32ae14005585912effd0f8fef181%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%225U7A5E3B%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bracht%20et%20al.%22%2C%22parsedDate%22%3A%222023-04-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBracht%2C%20V.%2C%20%3Cstrong%3EGembus%3C%5C%2Fstrong%3E%2C%20J.-L.%2C%20Bibinov%2C%20N.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282023%29.%20Surface%20modifications%20of%20aluminium%20and%20aluminium%20oxide%20induced%20by%20a%20treatment%20with%20a%20He-plasma%20jet%20and%20plasma%20electrolytic%20oxidation.%20%3Ci%3EJournal%20of%20Physics%20D%3A%20Applied%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E56%3C%5C%2Fi%3E%2816%29%2C%20165201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Facbd5e%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Facbd5e%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3D5U7A5E3B%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Surface%20modifications%20of%20aluminium%20and%20aluminium%20oxide%20induced%20by%20a%20treatment%20with%20a%20He-plasma%20jet%20and%20plasma%20electrolytic%20oxidation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vera%22%2C%22lastName%22%3A%22Bracht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan-Luca%22%2C%22lastName%22%3A%22Gembus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Bibinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22Erosion%20of%20an%20aluminium%20oxide%20surface%20as%20well%20as%20a%20formation%20of%20an%20aluminium%20oxide%20coating%20on%20an%20aluminium%20substrate%2C%20comparable%20with%20erosion%20and%20oxide%20formation%20induced%20by%20plasma%20electrolytic%20oxidation%20%28PEO%29%2C%20can%20be%20caused%20at%20atmospheric%20pressure%20conditions%20by%20a%20DBD-like%20%28dielectric%20barrier%20discharge%29%20plasma%20jet.%20Obtained%20experimental%20results%20conform%20a%20previously%20assumed%20similarity%20of%20the%20erosion%20mechanisms%20induced%20by%20the%20atmospheric%20pressure%20DBD-like%20plasma%20jet%20and%20PEO%20microdischarges.%20The%20mechanism%20of%20a%20predominantly%20inward%20growth%20of%20the%20oxide%20layer%20during%20PEO%20processing%20is%20substantiated%20based%20on%20a%20comparison%20of%20aluminium%20oxide%20erosion%20and%20oxide%20layer%20deposition%20by%20a%20treatment%20with%20the%20considered%20He-plasma%20jet%20and%20a%20PEO%20process.%22%2C%22date%22%3A%222023-04-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Facbd5e%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Facbd5e%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-03-17T16%3A35%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22PV8GXKCG%22%2C%22library%22%3A%7B%22id%22%3A2825793%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sch%5Cu00fccke%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESch%26%23xFC%3Bcke%2C%20L.%2C%20%3Cstrong%3EGembus%3C%5C%2Fstrong%3E%2C%20J.-L.%2C%20Peters%2C%20N.%2C%20Kogelheide%2C%20F.%2C%20Nguyen-Smith%2C%20R.%20T.%2C%20Gibson%2C%20A.%20R.%2C%20Schulze%2C%20J.%2C%20Muhler%2C%20M.%2C%20%26amp%3B%20Awakowicz%2C%20P.%20%282020%29.%20Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge.%20%3Ci%3EPlasma%20Sources%20Science%20and%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2811%29%2C%20114003.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%3C%5C%2Fa%3E%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.aept.ruhr-uni-bochum.de%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D2825793%26amp%3Bitem_key%3DPV8GXKCG%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conversion%20of%20volatile%20organic%20compounds%20in%20a%20twin%20surface%20dielectric%20barrier%20discharge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Sch%5Cu00fccke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan-Luca%22%2C%22lastName%22%3A%22Gembus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Peters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Friederike%22%2C%22lastName%22%3A%22Kogelheide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20T%22%2C%22lastName%22%3A%22Nguyen-Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20R%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schulze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Muhler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Awakowicz%22%7D%5D%2C%22abstractNote%22%3A%22A%20voltage%20and%20power%20controlled%20surface%20dielectric%20barrier%20discharge%20for%20the%20removal%20of%20volatile%20organic%20compounds%20%28VOCs%29%20from%20gas%20streams%20is%20studied%20by%20means%20of%20current%5Cu2013voltage%20measurements%2C%20flame%20ionization%20detectors%2C%20and%20gas%20chromatography%5Cu2013mass%20spectrometry%20%28GC%5Cu2013MS%29.%20The%20discharge%20is%20generated%20in%20a%20defined%20synthetic%20air%20gas%20stream%20at%20atmospheric%20pressure%20by%20application%20of%20a%20damped%20sinusoidal%20voltage%20waveform%20resulting%20from%20a%20resonant%20circuit.%20Multiple%20organic%20compounds%2C%20namely%20n-butane%2C%20butanol%2C%20isobutanol%2C%20ethyl%20acetate%2C%20diethyl%20ether%2C%20and%20butoxyethanol%2C%20are%20tested%20at%20concentrations%20of%2050%2C%20100%2C%20200%2C%20and%20400%20ppm%20%28parts%20per%20million%29%2C%20as%20well%20as%20peak-to-peak%20voltages%20of%208%20to%2013%20kVpp%20and%20pulse%20repetition%20frequencies%20of%20250%20to%204000%20Hz.%20The%20dissipated%20power%20within%20the%20system%20is%20calculated%20utilizing%20the%20measured%20voltage%20and%20current%20waveforms.%20The%20conversion%20and%20absolute%20degradation%20of%20the%20VOCs%20are%20determined%20by%20flame%20ionization%20detectors.%20An%20increasing%20concentration%20of%20VOCs%20is%20found%20to%20increase%20the%20dissipated%20power%20marginally%2C%20suggesting%20a%20higher%20conductivity%20and%20higher%20electron%20densities%20in%20the%20plasma.%20Of%20the%20applied%20VOCs%2C%20n-butane%20is%20found%20to%20be%20the%20most%20resistant%20to%20the%20plasma%20treatment%2C%20while%20higher%20concentrations%20consistently%20result%20in%20a%20lower%20conversion%20and%20a%20higher%20absolute%20degradation%20across%20all%20tested%20compounds.%20Corresponding%20amounts%20of%20converted%20molecules%20per%20expended%20joule%20are%20given%20as%20a%20comparable%20parameter%20by%20weighting%20the%20absolute%20degradation%20with%20the%20dissipated%20power.%20Finally%2C%20specific%20reaction%20products%20are%20determined%20by%20online%20GC%5Cu2013MS%2C%20further%20confirming%20carbon%20dioxide%20%28CO2%29%20as%20a%20major%20reaction%20product%2C%20alongside%20a%20variety%20of%20less%20prevalent%20side%20products%2C%20depending%20on%20the%20structure%20of%20the%20original%20compound.%20The%20findings%20of%20this%20study%20are%20intended%20to%20promote%20the%20development%20of%20energy%20efficient%20processes%20for%20the%20purification%20of%20gas%20streams%20in%20both%2C%20industry%20and%20consumer%20market.%20Potential%20applications%20of%20the%20presented%20technique%20could%20be%20found%20in%20car%20paint%20shops%2C%20chemical%20plants%2C%20hospital%20ventilation%20systems%2C%20or%20air%20purifiers%20for%20living%20space.%22%2C%22date%22%3A%222020-11-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22ISSN%22%3A%221361-6595%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6595%5C%2Fabae0b%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222021-07-19T14%3A25%3A13Z%22%7D%7D%5D%7D
Bracht, V., Gembus, J.-L., Bibinov, N., & Awakowicz, P. (2023). Surface modifications of aluminium and aluminium oxide induced by a treatment with a He-plasma jet and plasma electrolytic oxidation. Journal of Physics D: Applied Physics, 56(16), 165201. https://doi.org/10.1088/1361-6463/acbd5e Cite
Schücke, L., Gembus, J.-L., Peters, N., Kogelheide, F., Nguyen-Smith, R. T., Gibson, A. R., Schulze, J., Muhler, M., & Awakowicz, P. (2020). Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 29(11), 114003. https://doi.org/10.1088/1361-6595/abae0b Cite