Dr.-Ing. Friederike Kogelheide

Senior Researcher and Co-Founder of glim Skin

Address
Ruhr-Uni­ver­si­tät Bo­chum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum, Germany

Room
ICN 02/643

Phone
+49 234 32 19744

Email
kogelheide(at)aept.rub.de


Publikationen

Bracht, V., Kogelheide, F., Gröger, S., Hermanns, P., Böddeker, S., Bibinov, N., & Awakowicz, P. (2021). Modifications of an electrolytic aluminum oxide film under the treatment with microdischarges during plasma electrolytic oxidation, a self-organized dielectric barrier discharge (DBD) and a DBD-like plasma jet. Plasma Research Express, 3(4), 045001. https://doi.org/10.1088/2516-1067/ac2e0f Cite
Hermanns, P., Kogelheide, F., Bracht, V., Ries, S., Krüger, F., Böddeker, S., Bibinov, N., & Awakowicz, P. (2021). Formation and behaviour of plasma spots on the surface of titanium film. Journal of Physics D: Applied Physics, 54(8), 085203. https://doi.org/10.1088/1361-6463/abc37e Cite
Yayci, A., Dirks, T., Kogelheide, F., Alcalde, M., Hollmann, F., Awakowicz, P., & Bandow, J. E. (2021). Protection strategies for biocatalytic proteins under plasma treatment. Journal of Physics D: Applied Physics, 54(3), 035204. https://doi.org/10.1088/1361-6463/abb979 Cite
Yayci, A., Dirks, T., Kogelheide, F., Alcalde, M., Hollmann, F., Awakowicz, P., & Bandow, J. E. (2020). Microscale Atmospheric Pressure Plasma Jet as a Source for Plasma‐Driven Biocatalysis. ChemCatChem, 12(23), 5893–5897. https://doi.org/10.1002/cctc.202001225 Cite
Schücke, L., Gembus, J.-L., Peters, N., Kogelheide, F., Nguyen-Smith, R. T., Gibson, A. R., Schulze, J., Muhler, M., & Awakowicz, P. (2020). Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 29(11), 114003. https://doi.org/10.1088/1361-6595/abae0b Cite
Deichmöller, J., Kogelheide, F., Murke, S., Hüther, D., Schwaab, G., Awakowicz, P., & Havenith, M. (2020). Does plasma-induced methionine degradation provide alternative reaction paths for cell death? Journal of Physics D: Applied Physics, 53(35), 355401. https://doi.org/10.1088/1361-6463/ab8cea Cite
Böddeker, S., Bracht, V., Hermanns, P., Gröger, S., Kogelheide, F., Bibinov, N., & Awakowicz, P. (2020). Anode spots of low current gliding arc plasmatron. Plasma Sources Science and Technology, 29(8), 08LT01. https://doi.org/10.1088/1361-6595/aba6a4 Cite
Kogelheide, F., Voigt, F., Hillebrand, B., Moeller, R., Fuchs, F., Gibson, A. R., Awakowicz, P., Stapelmann, K., & Fiebrandt, M. (2020). The role of humidity and UV-C emission in the inactivation of B. subtilis spores during atmospheric-pressure dielectric barrier discharge treatment. Journal of Physics D: Applied Physics, 53(29), 295201. https://doi.org/10.1088/1361-6463/ab77cc Cite
Śmiłowicz, D., Kogelheide, F., Schöne, A. L., Stapelmann, K., Awakowicz, P., & Metzler-Nolte, N. (2020). Catalytic oxidation of small organic molecules by cold plasma in solution in the presence of molecular iron complexes†. Scientific Reports, 10(1), 21652. https://doi.org/10.1038/s41598-020-78683-7 Cite
Kogelheide, F., Offerhaus, B., Bibinov, N., Krajinski, P., Schücke, L., Schulze, J., Stapelmann, K., & Awakowicz, P. (2020). Characterisation of volume and surface dielectric barrier discharges in N 2 –O 2 mixtures using optical emission spectroscopy. Plasma Processes and Polymers, 17(6), 1900126. https://doi.org/10.1002/ppap.201900126 Cite
Offerhaus, B., Kogelheide, F., Jalat, D., Bibinov, N., Schulze, J., Stapelmann, K., & Awakowicz, P. (2019). Determination of NO densities in a surface dielectric barrier discharge using optical emission spectroscopy. Journal of Applied Physics, 126(19), 193301. https://doi.org/10.1063/1.5094894 Cite
Golda, J., Kogelheide, F., Awakowicz, P., & Gathen, V. S. der. (2019). Dissipated electrical power and electron density in an RF atmospheric pressure helium plasma jet. Plasma Sources Science and Technology, 28(9), 095023. https://doi.org/10.1088/1361-6595/ab393d Cite
Lackmann, J.-W., Bruno, G., Jablonowski, H., Kogelheide, F., Offerhaus, B., Held, J., Schulz-von der Gathen, V., Stapelmann, K., von Woedtke, T., & Wende, K. (2019). Nitrosylation vs. oxidation – How to modulate cold physical plasmas for biological applications. PLOS ONE, 14(5), e0216606. https://doi.org/10.1371/journal.pone.0216606 Cite
Śmiłowicz, D., Kogelheide, F., Stapelmann, K., Awakowicz, P., & Metzler-Nolte, N. (2019). Study on Chemical Modifications of Glutathione by Cold Atmospheric Pressure Plasma (Cap) Operated in Air in the Presence of Fe(II) and Fe(III) Complexes. Scientific Reports, 9(1), 18024. https://doi.org/10.1038/s41598-019-53538-y Cite
Balzer, J., Demir, E., Kogelheide, F., Fuchs, P. C., Stapelmann, K., & Opländer, C. (2019). Cold atmospheric plasma (CAP) differently affects migration and differentiation of keratinocytes via hydrogen peroxide and nitric oxide-related products. Clinical Plasma Medicine, 13, 1–8. https://doi.org/10.1016/j.cpme.2018.11.001 Cite
Lackmann, J.-W., Wende, K., Verlackt, C., Golda, J., Volzke, J., Kogelheide, F., Held, J., Bekeschus, S., Bogaerts, A., Schulz-von der Gathen, V., & Stapelmann, K. (2018). Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound. Scientific Reports, 8(1), 7736. https://doi.org/10.1038/s41598-018-25937-0 Cite
Lackmann, J.-W., Klinkhammer, C., Verlackt, C., Jabloniwski, H., Kogelheide, F., Stapelmann, K., Bogaerts, A., Havenith, M., Weltmann, K.-D., & Wende, K. (2018). Modulating Plasma-Induced Thiol Chemistry In Liquids. Clinical Plasma Medicine, 9, 38–39. https://doi.org/10.1016/j.cpme.2017.12.060 Cite
Klinkhammer, C., Verlackt, C., śmiłowicz, D., Kogelheide, F., Bogaerts, A., Metzler-Nolte, N., Stapelmann, K., Havenith, M., & Lackmann, J.-W. (2017). Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide. Scientific Reports, 7(1), 13828. https://doi.org/10.1038/s41598-017-13041-8 Cite
Offerhaus, B., Lackmann, J.-W., Kogelheide, F., Bracht, V., Smith, R., Bibinov, N., Stapelmann, K., & Awakowicz, P. (2017). Spatially resolved measurements of the physical plasma parameters and the chemical modifications in a twin surface dielectric barrier discharge for gas flow purification. Plasma Processes and Polymers, 14(10), 1600255. https://doi.org/10.1002/ppap.201600255 Cite
Engelhardt, M., Kogelheide, F., Stapelmann, K., Bibinov, N., & Awakowicz, P. (2017). Micro-plasmoids in self organized filamentary dielectric barrier discharges. Plasma Processes and Polymers, 14(7), 1600095. https://doi.org/10.1002/ppap.201600095 Cite
Kogelheide, F., Kartaschew, K., Strack, M., Baldus, S., Metzler-Nolte, N., Havenith, M., Awakowicz, P., Stapelmann, K., & Lackmann, J.-W. (2016). FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. Journal of Physics D: Applied Physics, 49(8), 084004. https://doi.org/10.1088/0022-3727/49/8/084004 Cite
Lackmann, J.-W., Baldus, S., Steinborn, E., Edengeiser, E., Kogelheide, F., Langklotz, S., Schneider, S., Leichert, L. I. O., Benedikt, J., Awakowicz, P., & Bandow, J. E. (2015). A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. Journal of Physics D: Applied Physics, 48(49), 494003. https://doi.org/10.1088/0022-3727/48/49/494003 Cite
Baldus, S., Kogelheide, F., Bibinov, N., Stapelmann, K., & Awakowicz, P. (2015). Phase resolved analysis of the homogeneity of a diffuse dielectric barrier discharge. Journal of Physics D: Applied Physics, 48(37), 375202. https://doi.org/10.1088/0022-3727/48/37/375202 Cite